Fast overlapped scattered array storage schemes for sparse matrices

J. Trotter, P. Agrawal
{"title":"Fast overlapped scattered array storage schemes for sparse matrices","authors":"J. Trotter, P. Agrawal","doi":"10.1109/ICCAD.1990.129950","DOIUrl":null,"url":null,"abstract":"Several heuristic schemes for storing large sparse matrices in memory are presented. These heuristics exploit the distribution of the zero and non-zero elements of the matrix rather than just the number of non-zeros. Their performance ranges from very high packing density and acceptable processing time to extremely fast but acceptable packing density. The best packing density is comparable to the Ziegler scheme but at only 20% of the CPU time. The fastest scheme is about two orders of magnitude faster than the Ziegler method but achieves only about 60% of its packing density. Example matrices from circuit simulation data illustrate the superiority of the authors' schemes.<<ETX>>","PeriodicalId":242666,"journal":{"name":"1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers","volume":"R-18 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1990.129950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Several heuristic schemes for storing large sparse matrices in memory are presented. These heuristics exploit the distribution of the zero and non-zero elements of the matrix rather than just the number of non-zeros. Their performance ranges from very high packing density and acceptable processing time to extremely fast but acceptable packing density. The best packing density is comparable to the Ziegler scheme but at only 20% of the CPU time. The fastest scheme is about two orders of magnitude faster than the Ziegler method but achieves only about 60% of its packing density. Example matrices from circuit simulation data illustrate the superiority of the authors' schemes.<>
稀疏矩阵的快速重叠分散阵列存储方案
提出了几种在内存中存储大型稀疏矩阵的启发式方案。这些启发式方法利用矩阵中零和非零元素的分布,而不仅仅是非零元素的数量。它们的性能范围从非常高的包装密度和可接受的加工时间到非常快但可接受的包装密度。最佳的填充密度与齐格勒方案相当,但只占用20%的CPU时间。最快的方案比Ziegler方法快两个数量级,但只能达到Ziegler方法的60%左右。电路仿真数据的实例矩阵说明了作者方案的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信