A scientific framework for establishing ultrafast molecular dynamic research in imec’s AttoLab

L. Galleni, Faegheh S. Sajjadian, T. Conard, I. Pollentier, K. Dorney, F. Holzmeier, E. Larsen, Daniel Escudero, G. Pourtois, M. V. van Setten, Paul A. W. van der Heide, J. Petersen
{"title":"A scientific framework for establishing ultrafast molecular dynamic research in imec’s AttoLab","authors":"L. Galleni, Faegheh S. Sajjadian, T. Conard, I. Pollentier, K. Dorney, F. Holzmeier, E. Larsen, Daniel Escudero, G. Pourtois, M. V. van Setten, Paul A. W. van der Heide, J. Petersen","doi":"10.1117/12.2660047","DOIUrl":null,"url":null,"abstract":"Science stands on three legs: hypothesis, experiment, and simulation. This holds true for researching extreme ultraviolet (EUV) exposure of photoresist. Hypothesis: For resist exposure as patterns get smaller and closer together, approaching molecular units in width and resist-height, the molecular dynamics will limit the working resolution of the resist due to the formation of printing defects. Without taking proper consideration of these dynamics, the single-patterning lithography roadmap may end prematurely. Experimentally we are developing methods for sub-picosecond tracking of photoionization-induced processes. Using ultrashort pulses of light to excite and probe new materials with techniques that show the interactive dynamics of electronic and nuclear motion at the very limits of light-speed. This certainly holds true for exposing photoresists with EUV where ultrafast photoreactions induce chemical change via multiple pathways such as high-energy ionization fragmentation, recombination, and multispecies combination that ideally end in low-energy electron transfer reactions, analogous to lower energy photoreaction (but with a charge). In the nonideal case, these reaction processes lead to incompatible byproducts of the radiolysis that lead to types of stochastic defects. To do ultrafast studies we must build a foundation of knowledge using atomistic simulation to interpret transient molecular dynamic processes. Before we can do this, we need to learn how to simulate various spectral modalities to provide a starting point. In this work, we examine X-ray Photoelectron Spectroscopy of a model resist and use atomistic simulation to interpret the reactant-product composition of the spectral samples.","PeriodicalId":212235,"journal":{"name":"Advanced Lithography","volume":"CE-22 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2660047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Science stands on three legs: hypothesis, experiment, and simulation. This holds true for researching extreme ultraviolet (EUV) exposure of photoresist. Hypothesis: For resist exposure as patterns get smaller and closer together, approaching molecular units in width and resist-height, the molecular dynamics will limit the working resolution of the resist due to the formation of printing defects. Without taking proper consideration of these dynamics, the single-patterning lithography roadmap may end prematurely. Experimentally we are developing methods for sub-picosecond tracking of photoionization-induced processes. Using ultrashort pulses of light to excite and probe new materials with techniques that show the interactive dynamics of electronic and nuclear motion at the very limits of light-speed. This certainly holds true for exposing photoresists with EUV where ultrafast photoreactions induce chemical change via multiple pathways such as high-energy ionization fragmentation, recombination, and multispecies combination that ideally end in low-energy electron transfer reactions, analogous to lower energy photoreaction (but with a charge). In the nonideal case, these reaction processes lead to incompatible byproducts of the radiolysis that lead to types of stochastic defects. To do ultrafast studies we must build a foundation of knowledge using atomistic simulation to interpret transient molecular dynamic processes. Before we can do this, we need to learn how to simulate various spectral modalities to provide a starting point. In this work, we examine X-ray Photoelectron Spectroscopy of a model resist and use atomistic simulation to interpret the reactant-product composition of the spectral samples.
在imec的AttoLab建立超快分子动力学研究的科学框架
科学有三条腿:假设、实验和模拟。这适用于研究极紫外光(EUV)曝光的光刻胶。假设:对于抗蚀剂曝光,随着图案越来越小,越来越紧密,在宽度和抗蚀剂高度上接近分子单位,由于形成印刷缺陷,分子动力学将限制抗蚀剂的工作分辨率。如果不适当地考虑这些动态,单图案光刻路线图可能会过早结束。实验上,我们正在开发亚皮秒跟踪光电离诱导过程的方法。利用超短光脉冲来激发和探测新材料,这种技术显示了在光速极限下电子和核运动的相互作用动力学。这当然适用于用EUV暴露光刻胶,其中超快光反应通过多种途径诱导化学变化,如高能电离破碎,重组和多物质组合,理想情况下以低能电子转移反应结束,类似于低能光反应(但带电荷)。在非理想情况下,这些反应过程导致不相容的辐射分解副产物,从而导致各种随机缺陷。为了进行超快的研究,我们必须建立一个使用原子模拟来解释瞬态分子动力学过程的知识基础。在我们能做到这一点之前,我们需要学习如何模拟各种光谱模式,以提供一个起点。在这项工作中,我们研究了模型抗蚀剂的x射线光电子能谱,并使用原子模拟来解释光谱样品的反应物-产物组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信