Encoding categorical variables in physics-informed graphs for Bayesian Optimization

Jan Krummenauer, Nesrine Kammoun, Benedikt Stein, Juergen Goetze
{"title":"Encoding categorical variables in physics-informed graphs for Bayesian Optimization","authors":"Jan Krummenauer, Nesrine Kammoun, Benedikt Stein, Juergen Goetze","doi":"10.1109/COINS54846.2022.9854962","DOIUrl":null,"url":null,"abstract":"The handling of categorical variables is a major challenge while using Bayesian Optimization (BO). Recent publications address this problem by introducing novel BO-frameworks adjusted specifically for categorical inputs. A promising approach, named \"Gryffin\", highlights the importance of using prior physical knowledge about categorical variables and shows significant performance improvements in comparison to other state of the art frameworks. However, the runtime of this approach increases significantly when the number of categorical choices is large. Therefore, we propose an alternative method for utilizing prior physical knowledge in BO by using physics-informed graphs. Our approach is based on a BO framework named \"Combo\", which allows handling graph-structures as input variables. In contrast to handling the categorical variables in complete graphs as originally proposed, we present a method for reshaping and simplifying the graph-structures based on prior physical knowledge. Physical similarities of categorical choices are encoded in graph edges, inducing proximity in the search space and enabling more precise predictions of a surrogate model. The optimization performance improves in comparison to the default Combo approach and other state of the art optimization techniques.","PeriodicalId":187055,"journal":{"name":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","volume":"35 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COINS54846.2022.9854962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The handling of categorical variables is a major challenge while using Bayesian Optimization (BO). Recent publications address this problem by introducing novel BO-frameworks adjusted specifically for categorical inputs. A promising approach, named "Gryffin", highlights the importance of using prior physical knowledge about categorical variables and shows significant performance improvements in comparison to other state of the art frameworks. However, the runtime of this approach increases significantly when the number of categorical choices is large. Therefore, we propose an alternative method for utilizing prior physical knowledge in BO by using physics-informed graphs. Our approach is based on a BO framework named "Combo", which allows handling graph-structures as input variables. In contrast to handling the categorical variables in complete graphs as originally proposed, we present a method for reshaping and simplifying the graph-structures based on prior physical knowledge. Physical similarities of categorical choices are encoded in graph edges, inducing proximity in the search space and enabling more precise predictions of a surrogate model. The optimization performance improves in comparison to the default Combo approach and other state of the art optimization techniques.
编码分类变量的物理通知图贝叶斯优化
在使用贝叶斯优化(BO)时,分类变量的处理是一个主要挑战。最近的出版物通过引入专门针对分类输入进行调整的新颖bo框架来解决这一问题。一种名为“格兰芬多”的有前途的方法强调了使用关于分类变量的先验物理知识的重要性,并且与其他最先进的框架相比,显示出显着的性能改进。然而,当分类选择的数量很大时,这种方法的运行时间会显著增加。因此,我们提出了一种替代方法,通过使用物理信息图来利用BO中的先验物理知识。我们的方法是基于一个名为“Combo”的BO框架,它允许将图结构作为输入变量来处理。与先前提出的处理完全图中的分类变量的方法不同,我们提出了一种基于先验物理知识的重塑和简化图结构的方法。分类选择的物理相似性被编码在图边中,诱导搜索空间中的接近性,并使代理模型能够更精确地预测。与默认的Combo方法和其他最先进的优化技术相比,优化性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信