Event-triggered topology identification for state estimation in active distribution networks

B. Hayes, A. Escalera, M. Prodanović
{"title":"Event-triggered topology identification for state estimation in active distribution networks","authors":"B. Hayes, A. Escalera, M. Prodanović","doi":"10.1109/ISGTEurope.2016.7856295","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of topology identification algorithms for detection of network configuration changes in Active Distribution Networks (ADNs). In ADNs with high penetrations of Distributed Generation (DG) and microgrids (μGs), network topology identification is more complex, since there are more switching operations and a greater need for the State Estimator (SE) to be robust to missing or incorrect switch statuses. This paper develops and tests SE algorithms with an event-triggered topology identification stage designed to identify network configuration changes, including the connection/disconnection of μGs. The methodology is demonstrated using recorded MV distribution system measurement data, and its performance is investigated in cases where the input measurement data quality and redundancy is low. The performance of two different approaches to the topology identification problem, the Recursive Bayesian Approach (RBA) and the Generalised SE approach, are compared.","PeriodicalId":330869,"journal":{"name":"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"97 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2016.7856295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper investigates the use of topology identification algorithms for detection of network configuration changes in Active Distribution Networks (ADNs). In ADNs with high penetrations of Distributed Generation (DG) and microgrids (μGs), network topology identification is more complex, since there are more switching operations and a greater need for the State Estimator (SE) to be robust to missing or incorrect switch statuses. This paper develops and tests SE algorithms with an event-triggered topology identification stage designed to identify network configuration changes, including the connection/disconnection of μGs. The methodology is demonstrated using recorded MV distribution system measurement data, and its performance is investigated in cases where the input measurement data quality and redundancy is low. The performance of two different approaches to the topology identification problem, the Recursive Bayesian Approach (RBA) and the Generalised SE approach, are compared.
主动配电网络状态估计的事件触发拓扑识别
本文研究了在主动配电网(ADNs)中使用拓扑识别算法来检测网络配置变化。在分布式发电(DG)和微电网(μGs)渗透率较高的ADNs中,网络拓扑识别更为复杂,因为有更多的交换操作,并且更需要状态估计器(SE)对缺失或错误的交换状态具有鲁棒性。本文利用事件触发的拓扑识别阶段开发并测试了SE算法,该阶段设计用于识别网络配置变化,包括μ g的连接/断开。利用记录的中压配电系统测量数据对该方法进行了验证,并对其在输入测量数据质量和冗余度较低的情况下的性能进行了研究。比较了两种不同的拓扑识别方法,递归贝叶斯方法(RBA)和广义贝叶斯方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信