Chih-Wen Chuang, E. Go Chua, Yu-Sheng Lai, W. Fang
{"title":"RF-powered Li-ion battery charger for biomedical applications","authors":"Chih-Wen Chuang, E. Go Chua, Yu-Sheng Lai, W. Fang","doi":"10.1109/LISSA.2009.4906742","DOIUrl":null,"url":null,"abstract":"An integrated RF-powered Li-ion battery charger solution has been developed for biomedical applications. RF energy received through an antenna is rectified, regulated, and passed on to a battery charger circuit that charges a Li-ion battery efficiently and accurately. The charger system has been implemented using UMC 90nm BiCMOS process library. Experimental results show that a battery model with internal resistance of 300mΩ and internal capacitance of 10mF can be charged to its full capacity at 3.5V in 0.2ms by a 2mW 10MHz RF power source referred from the antenna. The implemented charger circuit consumes only 240 uW.","PeriodicalId":285171,"journal":{"name":"2009 IEEE/NIH Life Science Systems and Applications Workshop","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE/NIH Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISSA.2009.4906742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
An integrated RF-powered Li-ion battery charger solution has been developed for biomedical applications. RF energy received through an antenna is rectified, regulated, and passed on to a battery charger circuit that charges a Li-ion battery efficiently and accurately. The charger system has been implemented using UMC 90nm BiCMOS process library. Experimental results show that a battery model with internal resistance of 300mΩ and internal capacitance of 10mF can be charged to its full capacity at 3.5V in 0.2ms by a 2mW 10MHz RF power source referred from the antenna. The implemented charger circuit consumes only 240 uW.