{"title":"Decentralized elastic electricity demand scheduling","authors":"B. M. Vasquez, L. Andrew, Julián García","doi":"10.1109/CSDE53843.2021.9718482","DOIUrl":null,"url":null,"abstract":"The adoption of intermittent renewables in the electricity grid will increasingly require loads to track available generation. This paper proposes several algorithms to schedule flexible-power loads that arrive unpredictably to a grid-connected microgrid. These are based on standard schedulers such as Shortest Remaining Processing Time (SRPT), adapted to the fact that appliances have maximum power ratings. A simple decentralized scheduler is applied to ensure that the aggregate load does not exceed the generation, and a gain control mechanism is proposed to stabilize the system. The proposed scheduler has two sources of sub-optimality: determining the values of the control signals, and their overall structures. In order to separate these two effects, we consider a full communication version as a benchmark in order to assess performance against the SRPT-based algorithms and fair sharing. This full communication “decentralized” approach approximates the performance of SRPT-based policies, suggesting that a true decentralized controller may be feasible in the future.","PeriodicalId":166950,"journal":{"name":"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)","volume":"1 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSDE53843.2021.9718482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The adoption of intermittent renewables in the electricity grid will increasingly require loads to track available generation. This paper proposes several algorithms to schedule flexible-power loads that arrive unpredictably to a grid-connected microgrid. These are based on standard schedulers such as Shortest Remaining Processing Time (SRPT), adapted to the fact that appliances have maximum power ratings. A simple decentralized scheduler is applied to ensure that the aggregate load does not exceed the generation, and a gain control mechanism is proposed to stabilize the system. The proposed scheduler has two sources of sub-optimality: determining the values of the control signals, and their overall structures. In order to separate these two effects, we consider a full communication version as a benchmark in order to assess performance against the SRPT-based algorithms and fair sharing. This full communication “decentralized” approach approximates the performance of SRPT-based policies, suggesting that a true decentralized controller may be feasible in the future.