{"title":"Microsystems, microsensors and microactuators: Research and education","authors":"M. Husák, J. Jakovenko","doi":"10.1109/MSE.2009.5270814","DOIUrl":null,"url":null,"abstract":"Interdisciplinary knowledge is important for microsystem education. Main areas of required knowledge are electronic structures, electronic circuits, materials, bioelectronics, etc. The education involves nanomaterials and smart materials for sensor and smart micro and nanosystems. System of different interconnected laboratories is necessary for high quality education. Laboratories represent design flow (design, simulation, models and modelling, verifications, testing and corrected outputs). Direct research connection as well as development together with education and direct student participation in research is desirable. Student individual projects serve as a part of research. Several workplaces are used where students work on defined tasks. The use of special instrumentation, microscope and other nanotechnology workplaces in the different institutes is necessary. There have been established direct links to technological companies. Employment of students enables to increase cooperation with companies. Students participate in research projects as well. Individual student projects contribute to student professional shaping. Courses represent three stage educations.","PeriodicalId":241566,"journal":{"name":"2009 IEEE International Conference on Microelectronic Systems Education","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Microelectronic Systems Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSE.2009.5270814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Interdisciplinary knowledge is important for microsystem education. Main areas of required knowledge are electronic structures, electronic circuits, materials, bioelectronics, etc. The education involves nanomaterials and smart materials for sensor and smart micro and nanosystems. System of different interconnected laboratories is necessary for high quality education. Laboratories represent design flow (design, simulation, models and modelling, verifications, testing and corrected outputs). Direct research connection as well as development together with education and direct student participation in research is desirable. Student individual projects serve as a part of research. Several workplaces are used where students work on defined tasks. The use of special instrumentation, microscope and other nanotechnology workplaces in the different institutes is necessary. There have been established direct links to technological companies. Employment of students enables to increase cooperation with companies. Students participate in research projects as well. Individual student projects contribute to student professional shaping. Courses represent three stage educations.