Holographic techniques to improve antenna measurements

Francisco Jose Cano Facila, M. S. Castañer
{"title":"Holographic techniques to improve antenna measurements","authors":"Francisco Jose Cano Facila, M. S. Castañer","doi":"10.1049/sbew529e_ch4","DOIUrl":null,"url":null,"abstract":"This chapter has analysed the use of holographic techniques for the improvement of the quality of antenna measurements through post-processing techniques. Holographic techniques and the use of plane wave expansion of the radiated field allow an easy way of expression of the radiated field of the antenna. This plane wave expansion is directly related with the sources of the antenna in a plane through an FFT. The use of the FFT allows a very fast calculation, and the results can be practically obtained in real time.The chapter has explored the use of these techniques for echo reduction, increase of SNR, reduction of truncation errors and leakage detection and cancellation. The main advantage of this technique is the required time and reduced computer requirements. These advantages make this technique very useful for some applications. The main drawbacks are the use of planar surfaces, which makes this technique very appropriate for aperture or planar antennas, but not so good for other kind of antennas. However, the sources can be reconstructed in a plane in front of the antenna. Also, the use of holographic techniques makes these techniques appropriate for antennas radiating in one hemisphere. Again, aperture or planar antennas are the most pertinent for the use of these algorithms. In the previous chapter, a more general technique calculating electromagnetic currents on a surface enclosing the antenna has the advantage of the application for a general antenna, but the required time is much higher.","PeriodicalId":372151,"journal":{"name":"Post-processing Techniques in Antenna Measurement","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Post-processing Techniques in Antenna Measurement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/sbew529e_ch4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter has analysed the use of holographic techniques for the improvement of the quality of antenna measurements through post-processing techniques. Holographic techniques and the use of plane wave expansion of the radiated field allow an easy way of expression of the radiated field of the antenna. This plane wave expansion is directly related with the sources of the antenna in a plane through an FFT. The use of the FFT allows a very fast calculation, and the results can be practically obtained in real time.The chapter has explored the use of these techniques for echo reduction, increase of SNR, reduction of truncation errors and leakage detection and cancellation. The main advantage of this technique is the required time and reduced computer requirements. These advantages make this technique very useful for some applications. The main drawbacks are the use of planar surfaces, which makes this technique very appropriate for aperture or planar antennas, but not so good for other kind of antennas. However, the sources can be reconstructed in a plane in front of the antenna. Also, the use of holographic techniques makes these techniques appropriate for antennas radiating in one hemisphere. Again, aperture or planar antennas are the most pertinent for the use of these algorithms. In the previous chapter, a more general technique calculating electromagnetic currents on a surface enclosing the antenna has the advantage of the application for a general antenna, but the required time is much higher.
全息技术改善天线测量
本章分析了利用全息技术通过后处理技术来提高天线测量的质量。全息技术和使用辐射场的平面波扩展允许一种简单的方式来表达天线的辐射场。通过FFT,这种平面波扩展与天线在平面上的源直接相关。使用FFT可以实现非常快的计算,并且可以实时得到实际的结果。本章探讨了这些技术在减少回声、增加信噪比、减少截断误差以及泄漏检测和消除方面的应用。这种技术的主要优点是所需的时间和减少的计算机需求。这些优点使得该技术对某些应用程序非常有用。主要的缺点是使用平面表面,这使得这种技术非常适合于孔径或平面天线,但不太适合其他类型的天线。然而,源可以在天线前的一个平面内重建。此外,全息技术的使用使得这些技术适用于在一个半球辐射的天线。同样,孔径或平面天线是最适合使用这些算法的。在前一章中,一种更通用的计算天线表面电磁电流的技术具有一般天线应用的优点,但所需的时间要高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信