Bayesian tracking of multiple objects with vision and radar

Michael Hoy, Chaoqun Weng, Junsong Yuan, J. Dauwels
{"title":"Bayesian tracking of multiple objects with vision and radar","authors":"Michael Hoy, Chaoqun Weng, Junsong Yuan, J. Dauwels","doi":"10.1109/ICARCV.2016.7838788","DOIUrl":null,"url":null,"abstract":"This paper is concerned with a system for detecting and tracking multiple 3D bounding boxes based on information from multiple sensors. Our framework is built around an inference engine similar to the probability hypothesis density (PHD) filter, where the state space consists of stochastic bounding boxes with constant velocity dynamics. We outline measurement equations for two modalities (vision and radar). The result is a flexible inference system suitable for use on autonomous vehicles.","PeriodicalId":128828,"journal":{"name":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2016.7838788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper is concerned with a system for detecting and tracking multiple 3D bounding boxes based on information from multiple sensors. Our framework is built around an inference engine similar to the probability hypothesis density (PHD) filter, where the state space consists of stochastic bounding boxes with constant velocity dynamics. We outline measurement equations for two modalities (vision and radar). The result is a flexible inference system suitable for use on autonomous vehicles.
基于视觉和雷达的多目标贝叶斯跟踪
本文研究了一种基于多个传感器信息的三维边界盒检测与跟踪系统。我们的框架是围绕一个类似于概率假设密度(PHD)过滤器的推理引擎构建的,其中状态空间由具有恒定速度动力学的随机边界盒组成。我们概述了两种模式(视觉和雷达)的测量方程。结果是一个适用于自动驾驶汽车的灵活推理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信