Robust Estimation of Shift–Invariant Patterns Exploiting Correntropy

Carlos A. Loza, J. Príncipe
{"title":"Robust Estimation of Shift–Invariant Patterns Exploiting Correntropy","authors":"Carlos A. Loza, J. Príncipe","doi":"10.1109/ETCM.2018.8580309","DOIUrl":null,"url":null,"abstract":"We propose a novel framework for robust estimation of recurring patterns in time series. Particularly, we utilize correntropy and a shift–invariant adaptation of sparse modeling techniques as the underpinnings of a data–driven scheme where potential outliers, such as spikes, dropouts, high–amplitude impulsive noise, gaps, and overlaps are managed in a principled manner. The Maximum Correntropy Criterion (MCC) is applied to the estimation paradigms and solved via the Half–Quadratic (HQ) technique, which allows a fast and efficient computation of the optimal projection vectors without adding extra free parameters. We also posit a heuristic regarding the initial set of functions to be estimated; specifically, we restrict the search space to patterns with modulatory activity only. We then implement a robust clustering routine to provide a principled initial seed for the greedy algorithms. This heuristic is proved to alleviate the computational burden that shift–invariant unsupervised learning usually entails. The framework is tested on synthetic time series built from weighted Discrete Cosine Transform (DCT) atoms under four different variants of outliers. In addition, we present preliminary results on winding data that illustrate the clear advantages of the methods.","PeriodicalId":334574,"journal":{"name":"2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM)","volume":"186 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM.2018.8580309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel framework for robust estimation of recurring patterns in time series. Particularly, we utilize correntropy and a shift–invariant adaptation of sparse modeling techniques as the underpinnings of a data–driven scheme where potential outliers, such as spikes, dropouts, high–amplitude impulsive noise, gaps, and overlaps are managed in a principled manner. The Maximum Correntropy Criterion (MCC) is applied to the estimation paradigms and solved via the Half–Quadratic (HQ) technique, which allows a fast and efficient computation of the optimal projection vectors without adding extra free parameters. We also posit a heuristic regarding the initial set of functions to be estimated; specifically, we restrict the search space to patterns with modulatory activity only. We then implement a robust clustering routine to provide a principled initial seed for the greedy algorithms. This heuristic is proved to alleviate the computational burden that shift–invariant unsupervised learning usually entails. The framework is tested on synthetic time series built from weighted Discrete Cosine Transform (DCT) atoms under four different variants of outliers. In addition, we present preliminary results on winding data that illustrate the clear advantages of the methods.
利用相关系数的移位不变模式鲁棒估计
我们提出了一种新的框架,用于鲁棒估计时间序列中的重复模式。特别是,我们利用相关熵和稀疏建模技术的移位不变适应作为数据驱动方案的基础,其中潜在的异常值,如尖峰,dropouts,高振幅脉冲噪声,间隙和重叠以原则的方式进行管理。将最大相关系数准则(MCC)应用于估计范式,并通过半二次(HQ)技术求解,可以在不添加额外自由参数的情况下快速有效地计算最优投影向量。我们还假设了一个关于待估计的初始函数集的启发式;具体来说,我们将搜索空间限制为仅具有调节活动的模式。然后,我们实现了一个健壮的聚类例程,为贪婪算法提供原则性的初始种子。这种启发式方法被证明可以减轻平移不变无监督学习通常带来的计算负担。该框架在加权离散余弦变换(DCT)原子构建的合成时间序列上进行了四种不同异常值变体的测试。此外,我们给出了绕组数据的初步结果,说明了该方法的明显优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信