Cousin’s lemma in second-order arithmetic

Jordan Barrett, R. Downey, Noam Greenberg
{"title":"Cousin’s lemma in second-order arithmetic","authors":"Jordan Barrett, R. Downey, Noam Greenberg","doi":"10.1090/bproc/111","DOIUrl":null,"url":null,"abstract":"Cousin's lemma is a compactness principle that naturally arises when studying the gauge integral, a generalisation of the Lebesgue integral. We study the axiomatic strength of Cousin's lemma for various classes of functions, using Friedman and Simpson's reverse mathematics in second-order arithmetic. We prove that, over $\\mathsf{RCA}_0$: \n(i) Cousin's lemma for continuous functions is equivalent to $\\mathsf{WKL}_0$; \n(ii) Cousin's lemma for Baire class 1 functions is equivalent to $\\mathsf{ACA}_0$; \n(iii) Cousin's lemma for Baire class 2 functions, or for Borel functions, are both equivalent to $\\mathsf{ATR}_0$ (modulo some induction).","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Cousin's lemma is a compactness principle that naturally arises when studying the gauge integral, a generalisation of the Lebesgue integral. We study the axiomatic strength of Cousin's lemma for various classes of functions, using Friedman and Simpson's reverse mathematics in second-order arithmetic. We prove that, over $\mathsf{RCA}_0$: (i) Cousin's lemma for continuous functions is equivalent to $\mathsf{WKL}_0$; (ii) Cousin's lemma for Baire class 1 functions is equivalent to $\mathsf{ACA}_0$; (iii) Cousin's lemma for Baire class 2 functions, or for Borel functions, are both equivalent to $\mathsf{ATR}_0$ (modulo some induction).
二阶算术中的表亲引理
表兄引理是研究规范积分时自然产生的紧致原理,是勒贝格积分的推广。利用二阶算术中的Friedman和Simpson逆数学,研究了各种函数的表哥引理的公理化强度。我们证明了在$\mathsf{RCA}_0$上:(i)连续函数的表姐引理等价于$\mathsf{WKL}_0$;(ii) Baire类1函数的表姐引理等价于$\mathsf{ACA}_0$;(iii)对于Baire类2函数,或对于Borel函数,表妹引理都等价于$\mathsf{ATR}_0$(模某些归纳)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信