Self-adapt evolution SVR in a traffic flow forecasting

Cai Lei, Qu Shiru, Li Xun
{"title":"Self-adapt evolution SVR in a traffic flow forecasting","authors":"Cai Lei, Qu Shiru, Li Xun","doi":"10.1109/ICSPCC.2013.6663976","DOIUrl":null,"url":null,"abstract":"This paper proposes a self-adapt evolution support vector regression (SaDE-SVR) in order to improve the performance of traffic flow forecasting. By incorporating the Self-adapt differential evolution algorithm, the parameters of SVR are optimized during the training phase. Additionally, a numerical example of traffic flow data from Xi'an is used to evaluate the performance of the proposed method. The experiment has shown that the proposed SaDE-SVR can achieve the better accuracy without any manually choosing generation and control parameters. It provides an alternative method for traffic flow forecasting.","PeriodicalId":124509,"journal":{"name":"2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC.2013.6663976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a self-adapt evolution support vector regression (SaDE-SVR) in order to improve the performance of traffic flow forecasting. By incorporating the Self-adapt differential evolution algorithm, the parameters of SVR are optimized during the training phase. Additionally, a numerical example of traffic flow data from Xi'an is used to evaluate the performance of the proposed method. The experiment has shown that the proposed SaDE-SVR can achieve the better accuracy without any manually choosing generation and control parameters. It provides an alternative method for traffic flow forecasting.
自适应进化支持向量回归在交通流预测中的应用
为了提高交通流预测的性能,本文提出了一种自适应进化支持向量回归(SaDE-SVR)方法。结合自适应差分进化算法,在训练阶段对支持向量回归算法的参数进行优化。最后,以西安市的交通流数据为例,对所提方法的性能进行了评价。实验表明,在不需要人工选择生成参数和控制参数的情况下,所提出的SaDE-SVR可以达到较好的精度。它为交通流量预测提供了另一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信