Limiting spectral distribution of large dimensional random matrices of linear processes

Zahira Khettab
{"title":"Limiting spectral distribution of large dimensional random matrices of linear processes","authors":"Zahira Khettab","doi":"10.51936/zjbw7680","DOIUrl":null,"url":null,"abstract":"The limiting spectral distribution (LSD) of large sample radom matrices is derived under dependence conditions. We consider the matrices \\(X_{N}T_{N}X_{N}^{\\prime}\\) , where \\(X_{N}\\) is a matrix (\\(N \\times n(N)\\)) where the column vectors are modeled as linear processes, and \\(T_{N}\\) is a real symmetric matrix whose LSD exists. Under some conditions we show that, the LSD of \\(X_{N}T_{N}X_{N}^{\\prime}\\) exists almost surely, as \\(N \\rightarrow \\infty\\) and \\(n(N)/N \\rightarrow c > 0\\). Numerical simulations are also provided with the intention to study the convergence of the empirical density estimator of the spectral density of \\(X_{N}T_{N}X_{N}^{\\prime}\\).","PeriodicalId":242585,"journal":{"name":"Advances in Methodology and Statistics","volume":"10 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methodology and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51936/zjbw7680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The limiting spectral distribution (LSD) of large sample radom matrices is derived under dependence conditions. We consider the matrices \(X_{N}T_{N}X_{N}^{\prime}\) , where \(X_{N}\) is a matrix (\(N \times n(N)\)) where the column vectors are modeled as linear processes, and \(T_{N}\) is a real symmetric matrix whose LSD exists. Under some conditions we show that, the LSD of \(X_{N}T_{N}X_{N}^{\prime}\) exists almost surely, as \(N \rightarrow \infty\) and \(n(N)/N \rightarrow c > 0\). Numerical simulations are also provided with the intention to study the convergence of the empirical density estimator of the spectral density of \(X_{N}T_{N}X_{N}^{\prime}\).
线性过程大维随机矩阵的极限谱分布
导出了依赖条件下大样本随机矩阵的极限谱分布。我们考虑矩阵\(X_{N}T_{N}X_{N}^{\prime}\),其中\(X_{N}\)是一个矩阵(\(N \times n(N)\)),其中列向量被建模为线性过程,\(T_{N}\)是一个实对称矩阵,其LSD存在。在某些条件下,我们证明了\(X_{N}T_{N}X_{N}^{\prime}\)的LSD几乎肯定存在,就像\(N \rightarrow \infty\)和\(n(N)/N \rightarrow c > 0\)一样。数值模拟的目的是研究\(X_{N}T_{N}X_{N}^{\prime}\)的谱密度经验密度估计的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信