Analytic solutions for reduced leading-edge noise aerofoils

Lorna J. Ayton, Chaitanya C. Paruchuri
{"title":"Analytic solutions for reduced leading-edge noise aerofoils","authors":"Lorna J. Ayton, Chaitanya C. Paruchuri","doi":"10.2514/6.2018-3284","DOIUrl":null,"url":null,"abstract":"This paper presents an analytic solution for the sound generated by an unsteady gust interacting with a semi-infinite at plate with a piecewise linear periodic leading edge. The Wiener-Hopf method is used in conjunction with a non-orthogonal coordinate transformation and separation of variables to allow analytical progress. A fully analytic solution is obtained in terms of a modal expansion for the far-field noise which is obtained by summing only a finite number of cuton modes, allowing very quick evaluation. The analytic solution is compared to experimental results for five test case leading-edge geometries. Good agreement is seen indicating the analytic model is capturing the key features of the interaction such as the destructive interference from the tip and root. In four of the five test cases the serrated edges show large reductions of noise compared to the straight edge at mid and high frequencies, however the square wave geometry is seen to be ineffective at noise reduction for high frequencies.","PeriodicalId":429337,"journal":{"name":"2018 AIAA/CEAS Aeroacoustics Conference","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 AIAA/CEAS Aeroacoustics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2018-3284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents an analytic solution for the sound generated by an unsteady gust interacting with a semi-infinite at plate with a piecewise linear periodic leading edge. The Wiener-Hopf method is used in conjunction with a non-orthogonal coordinate transformation and separation of variables to allow analytical progress. A fully analytic solution is obtained in terms of a modal expansion for the far-field noise which is obtained by summing only a finite number of cuton modes, allowing very quick evaluation. The analytic solution is compared to experimental results for five test case leading-edge geometries. Good agreement is seen indicating the analytic model is capturing the key features of the interaction such as the destructive interference from the tip and root. In four of the five test cases the serrated edges show large reductions of noise compared to the straight edge at mid and high frequencies, however the square wave geometry is seen to be ineffective at noise reduction for high frequencies.
降低机翼前缘噪声的解析解决方案
本文给出了非定常阵风与具有分段线性周期前缘的半无限平板相互作用所产生的声音的解析解。Wiener-Hopf方法与非正交坐标变换和变量分离相结合,以允许分析进展。用模态展开法得到了远场噪声的完全解析解,而远场噪声的模态展开是通过对有限数量的卡顿模态求和而得到的,可以非常快速地进行评估。并将解析解与实验结果进行了比较。良好的一致性表明,分析模型捕获了相互作用的关键特征,例如来自尖端和根部的破坏性干扰。在五个测试案例中的四个中,锯齿形边缘在中频和高频下比直边显示出很大的降噪效果,然而,方波几何形状在高频降噪方面被认为是无效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信