Disturbance estimation combined with new adaptive RBF neural network for uncertain system with disturbance

Thiem V. Pham, L. Lãi, Q. T. T. Nguyen, M. Nguyen
{"title":"Disturbance estimation combined with new adaptive RBF neural network for uncertain system with disturbance","authors":"Thiem V. Pham, L. Lãi, Q. T. T. Nguyen, M. Nguyen","doi":"10.1109/ATC.2016.7764782","DOIUrl":null,"url":null,"abstract":"In this work, we propose a new adaptive neural network controller combined with disturbance estimation for a class of nonlinear systems. The approach uses Radial Basis Functions, RBF neural network. An adaptive scheme for the RBF neural network is developed to approximate unknown system functions and to estimate disturbances consisting of both approximation errors and external disturbances. An adaptive law is then applied to update the parameters of controller instead of choosing fixed controller's parameters which are coefficients of Hurwitz polynomial. Thanks to Lyapunov's theory, asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, an example, coupled tank liquid system, is presented to illustrate the proposed methods.","PeriodicalId":225413,"journal":{"name":"2016 International Conference on Advanced Technologies for Communications (ATC)","volume":" 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Technologies for Communications (ATC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC.2016.7764782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we propose a new adaptive neural network controller combined with disturbance estimation for a class of nonlinear systems. The approach uses Radial Basis Functions, RBF neural network. An adaptive scheme for the RBF neural network is developed to approximate unknown system functions and to estimate disturbances consisting of both approximation errors and external disturbances. An adaptive law is then applied to update the parameters of controller instead of choosing fixed controller's parameters which are coefficients of Hurwitz polynomial. Thanks to Lyapunov's theory, asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, an example, coupled tank liquid system, is presented to illustrate the proposed methods.
基于自适应RBF神经网络的不确定系统扰动估计
本文针对一类非线性系统,提出了一种结合扰动估计的自适应神经网络控制器。该方法采用径向基函数、RBF神经网络。提出了一种自适应RBF神经网络逼近未知系统函数和估计由逼近误差和外部干扰组成的干扰的方案。采用自适应律来更新控制器参数,而不是选择固定的控制器参数作为Hurwitz多项式的系数。利用Lyapunov理论,建立了系统的渐近稳定性,跟踪误差收敛到原点的一个邻域。最后,以耦合罐液系统为例说明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信