Dot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate matrix-vector multiplication

Miao Hu, J. Strachan, Zhiyong Li, E. M. Grafals, N. Dávila, Catherine E. Graves, Sity Lam, Ning Ge, Jianhua Joshua Yang, R. Williams
{"title":"Dot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate matrix-vector multiplication","authors":"Miao Hu, J. Strachan, Zhiyong Li, E. M. Grafals, N. Dávila, Catherine E. Graves, Sity Lam, Ning Ge, Jianhua Joshua Yang, R. Williams","doi":"10.1145/2897937.2898010","DOIUrl":null,"url":null,"abstract":"Vector-matrix multiplication dominates the computation time and energy for many workloads, particularly neural network algorithms and linear transforms (e.g, the Discrete Fourier Transform). Utilizing the natural current accumulation feature of memristor crossbar, we developed the Dot-Product Engine (DPE) as a high density, high power efficiency accelerator for approximate matrix-vector multiplication. We firstly invented a conversion algorithm to map arbitrary matrix values appropriately to memristor conductances in a realistic crossbar array, accounting for device physics and circuit issues to reduce computational errors. The accurate device resistance programming in large arrays is enabled by close-loop pulse tuning and access transistors. To validate our approach, we simulated and benchmarked one of the state-of-the-art neural networks for pattern recognition on the DPEs. The result shows no accuracy degradation compared to software approach (99 % pattern recognition accuracy for MNIST data set) with only 4 Bit DAC/ADC requirement, while the DPE can achieve a speed-efficiency product of 1,000× to 10,000× compared to a custom digital ASIC.","PeriodicalId":185271,"journal":{"name":"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"618 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"547","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897937.2898010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 547

Abstract

Vector-matrix multiplication dominates the computation time and energy for many workloads, particularly neural network algorithms and linear transforms (e.g, the Discrete Fourier Transform). Utilizing the natural current accumulation feature of memristor crossbar, we developed the Dot-Product Engine (DPE) as a high density, high power efficiency accelerator for approximate matrix-vector multiplication. We firstly invented a conversion algorithm to map arbitrary matrix values appropriately to memristor conductances in a realistic crossbar array, accounting for device physics and circuit issues to reduce computational errors. The accurate device resistance programming in large arrays is enabled by close-loop pulse tuning and access transistors. To validate our approach, we simulated and benchmarked one of the state-of-the-art neural networks for pattern recognition on the DPEs. The result shows no accuracy degradation compared to software approach (99 % pattern recognition accuracy for MNIST data set) with only 4 Bit DAC/ADC requirement, while the DPE can achieve a speed-efficiency product of 1,000× to 10,000× compared to a custom digital ASIC.
神经形态计算的点积引擎:编程1T1M交叉栏加速矩阵向量乘法
对于许多工作负载,特别是神经网络算法和线性变换(例如离散傅里叶变换),向量矩阵乘法支配着计算时间和能量。利用忆阻交叉棒的自然电流积累特性,我们开发了点积引擎(DPE)作为高密度,高功率效率的近似矩阵向量乘法加速器。我们首先发明了一种转换算法,将任意矩阵值适当地映射到现实交叉棒阵列中的忆阻电导,考虑到器件物理和电路问题,以减少计算误差。采用闭环脉冲调谐和接入晶体管实现了大型阵列器件电阻的精确编程。为了验证我们的方法,我们在dpe上模拟并测试了最先进的用于模式识别的神经网络之一。结果表明,与软件方法(MNIST数据集的模式识别精度为99%)相比,只有4位DAC/ADC要求的DPE没有精度下降,而与定制数字ASIC相比,DPE可以实现1000倍到10,000倍的速度效率产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信