Prediction of Multi-Epitopic Domains of a Putative Oral Vaccine against Hepatitis C Virus

O. Adeoti
{"title":"Prediction of Multi-Epitopic Domains of a Putative Oral Vaccine against Hepatitis C Virus","authors":"O. Adeoti","doi":"10.55124/ijim.v1i1.39","DOIUrl":null,"url":null,"abstract":"For vaccine development, triggering an immune response is desired. Designing and assessing vaccine candidates for the appropriate immune response is critical for their success. Hepatitis C virus is the major cause of liver disease.  Anti HCV vaccines if designed is rational decision to reinforce specific T-cell as a crucial aspect of effective antiviral treatment. This study explored the use of bioinformatics tools by retrieval of twenty (20) HCV proteins which were selected for vaccine design. These were retrieved from UniProt server based on their antigenicity, virulence, subcellular localization, essentiality non-homology and other physical parameters, including, TM helices, and relative molecular mass. BLASTp revealed 80% non-identity with Homo sapiens genes. The Epitopes obtained include:  Q3S781_9HEPC52-71, POLG_HCVBK442-461, POLG_HCVJA2-21, POLG_HCVJ177-95, POLG_HCVCO445-464, POLG_HCVR61107-1126, POLG_HCVJP47-66, POLG_HCVTW664-683, POLG_HCVTR446-465, LTOR5_HUMAN23-42, POLG_HCVT5100-119, POLG_HCVJT77-96, HOIL1_HUMAN169-188, POLG_HCVJ4644-663, POLG_HCVJ847-66, TFB2M_HUMAN49-68, RSF1_HUMAN138-157, A8DGK3_9HEPC77-96,   A8DHN1_9HEPC54-73,   and A8DFL0_9HEPC2-21. An antigenicity score of 0.6004 was obtained with the use of VaxiJen server. The allergenicity prediction showed that the vaccine is not allergenic with the use of AllerTOP v.2.0 and AlgPred servers. The molecular weights and theoretical pI of protein were 45.1 kDa and 10.24 kDa respectively. A potentially suitable vaccine candidate with multivariant regions and immunogenic which could be antagonistic to HCV was designed. ","PeriodicalId":423779,"journal":{"name":"International Journal of Immunology and Microbiology","volume":"236 5-8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Immunology and Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55124/ijim.v1i1.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

For vaccine development, triggering an immune response is desired. Designing and assessing vaccine candidates for the appropriate immune response is critical for their success. Hepatitis C virus is the major cause of liver disease.  Anti HCV vaccines if designed is rational decision to reinforce specific T-cell as a crucial aspect of effective antiviral treatment. This study explored the use of bioinformatics tools by retrieval of twenty (20) HCV proteins which were selected for vaccine design. These were retrieved from UniProt server based on their antigenicity, virulence, subcellular localization, essentiality non-homology and other physical parameters, including, TM helices, and relative molecular mass. BLASTp revealed 80% non-identity with Homo sapiens genes. The Epitopes obtained include:  Q3S781_9HEPC52-71, POLG_HCVBK442-461, POLG_HCVJA2-21, POLG_HCVJ177-95, POLG_HCVCO445-464, POLG_HCVR61107-1126, POLG_HCVJP47-66, POLG_HCVTW664-683, POLG_HCVTR446-465, LTOR5_HUMAN23-42, POLG_HCVT5100-119, POLG_HCVJT77-96, HOIL1_HUMAN169-188, POLG_HCVJ4644-663, POLG_HCVJ847-66, TFB2M_HUMAN49-68, RSF1_HUMAN138-157, A8DGK3_9HEPC77-96,   A8DHN1_9HEPC54-73,   and A8DFL0_9HEPC2-21. An antigenicity score of 0.6004 was obtained with the use of VaxiJen server. The allergenicity prediction showed that the vaccine is not allergenic with the use of AllerTOP v.2.0 and AlgPred servers. The molecular weights and theoretical pI of protein were 45.1 kDa and 10.24 kDa respectively. A potentially suitable vaccine candidate with multivariant regions and immunogenic which could be antagonistic to HCV was designed. 
一种假定的口服丙型肝炎病毒疫苗的多表位结构域预测
为了开发疫苗,需要触发免疫反应。设计和评估适当免疫反应的候选疫苗对其成功至关重要。丙型肝炎病毒是导致肝脏疾病的主要原因。抗HCV疫苗的设计是合理的决定,以加强特异性t细胞作为有效抗病毒治疗的一个关键方面。本研究通过筛选20种HCV蛋白用于疫苗设计,探索了生物信息学工具的使用。根据其抗原性、毒力、亚细胞定位、本质非同源性和其他物理参数(包括TM螺旋和相对分子质量)从UniProt服务器中检索。BLASTp显示80%与智人基因不一致。获得的表位包括:Q3S781_9HEPC52-71, POLG_HCVBK442-461, POLG_HCVJA2-21, POLG_HCVJ177-95, POLG_HCVCO445-464, POLG_HCVR61107-1126, POLG_HCVJP47-66, POLG_HCVTW664-683, POLG_HCVTR446-465, LTOR5_HUMAN23-42, polg_hcvvt5100 -119, POLG_HCVJT77-96, HOIL1_HUMAN169-188, POLG_HCVJ4644-663, POLG_HCVJ847-66, TFB2M_HUMAN49-68, RSF1_HUMAN138-157, A8DGK3_9HEPC77-96, A8DHN1_9HEPC54-73和A8DFL0_9HEPC2-21。使用VaxiJen服务器获得的抗原性评分为0.6004。使用AllerTOP v.2.0和AlgPred服务器对疫苗进行致敏性预测,结果表明疫苗不具有致敏性。蛋白质的分子量和理论pI分别为45.1 kDa和10.24 kDa。设计了一种具有多变异区和免疫原性的HCV拮抗候选疫苗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信