Box segmentation, position and size estimation for robotic box handling applications

Juan Medrano, Francisco Yumbla, Geonuk Lee, Junseup Yi, Minjae Kim, Eugene Auh, Jeong Yeol Park, Ilho Oh, Nabih Pico, H. Moon
{"title":"Box segmentation, position and size estimation for robotic box handling applications","authors":"Juan Medrano, Francisco Yumbla, Geonuk Lee, Junseup Yi, Minjae Kim, Eugene Auh, Jeong Yeol Park, Ilho Oh, Nabih Pico, H. Moon","doi":"10.1109/ur55393.2022.9826264","DOIUrl":null,"url":null,"abstract":"This work presents a vision system developed for the robotic handling of boxes in logistic applications. The fundamental problem is to reliably and accurately estimate the position and size of boxes in the environment to enable successful and safe handling. To sense the environment we use color and depth images coming from RGB and Time-of-Flight cameras. The vision task is divided into two sub-problems. First, an instance segmentation problem in the color image space approached using deep learning to detect objects; second, a position, orientation and size estimation problem is solved using geometric algorithms over the input point cloud of each object. Our proposed approach achieves an average position estimation error of 7mm and size estimation error of 8mm. We demonstrate the effectiveness of our approach in real tests by handling carton and Styrofoam boxes of various sizes with a 6 Degree of Freedom robot using our proposed vision system.","PeriodicalId":398742,"journal":{"name":"2022 19th International Conference on Ubiquitous Robots (UR)","volume":"11 2-3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ur55393.2022.9826264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work presents a vision system developed for the robotic handling of boxes in logistic applications. The fundamental problem is to reliably and accurately estimate the position and size of boxes in the environment to enable successful and safe handling. To sense the environment we use color and depth images coming from RGB and Time-of-Flight cameras. The vision task is divided into two sub-problems. First, an instance segmentation problem in the color image space approached using deep learning to detect objects; second, a position, orientation and size estimation problem is solved using geometric algorithms over the input point cloud of each object. Our proposed approach achieves an average position estimation error of 7mm and size estimation error of 8mm. We demonstrate the effectiveness of our approach in real tests by handling carton and Styrofoam boxes of various sizes with a 6 Degree of Freedom robot using our proposed vision system.
机器人箱体处理应用的箱体分割、位置和尺寸估计
这项工作提出了一个视觉系统开发的机器人处理的箱子在物流应用。最根本的问题是可靠和准确地估计箱子在环境中的位置和尺寸,以确保成功和安全的处理。为了感知环境,我们使用来自RGB和Time-of-Flight相机的颜色和深度图像。视觉任务分为两个子问题。首先,利用深度学习方法解决了彩色图像空间中的实例分割问题;其次,利用几何算法对每个目标的输入点云进行位置、方向和大小估计。该方法的平均位置估计误差为7mm,尺寸估计误差为8mm。我们通过使用我们提出的视觉系统的6自由度机器人处理各种尺寸的纸箱和聚苯乙烯泡沫盒,在实际测试中证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信