Harmonic Detection Using the Direct Weight Determination Neural Network

Li Han, Ruan Xiu-kai, Zhu Xiang-ou
{"title":"Harmonic Detection Using the Direct Weight Determination Neural Network","authors":"Li Han, Ruan Xiu-kai, Zhu Xiang-ou","doi":"10.1109/ITA.2013.77","DOIUrl":null,"url":null,"abstract":"This paper presents a novel harmonic detection algorithm using the direct weight determination neural network for the electric power system. A new ANN structure is designed to strengthen the real-time capability of harmonic detection. The proposed algorithm employs the weight computation with sine base function to address the problem of harmonic detection. The optimal weight of this ANN with sine base function can be achieved by direct computation. This ANN can avoid the tediously long weight training and get the proper weight including the information of phase and amplitude of harmonic detection. The simulation computation demonstrates this algorithm has high precision and low computational complexity, and it has value in the harmonic detection of electric power system.","PeriodicalId":285687,"journal":{"name":"2013 International Conference on Information Technology and Applications","volume":"16 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2013.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel harmonic detection algorithm using the direct weight determination neural network for the electric power system. A new ANN structure is designed to strengthen the real-time capability of harmonic detection. The proposed algorithm employs the weight computation with sine base function to address the problem of harmonic detection. The optimal weight of this ANN with sine base function can be achieved by direct computation. This ANN can avoid the tediously long weight training and get the proper weight including the information of phase and amplitude of harmonic detection. The simulation computation demonstrates this algorithm has high precision and low computational complexity, and it has value in the harmonic detection of electric power system.
基于直接权值确定神经网络的谐波检测
提出了一种基于直接权值确定神经网络的电力系统谐波检测算法。为了增强谐波检测的实时性,设计了一种新的神经网络结构。该算法采用正弦基函数的权值计算来解决谐波检测问题。该带正弦基函数的神经网络的最优权值可通过直接计算得到。这种人工神经网络可以避免繁琐的长时间权值训练,得到包含谐波检测相位和幅值信息的合适权值。仿真计算表明,该算法具有精度高、计算复杂度低的特点,在电力系统谐波检测中具有一定的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信