Characterizing distribution rules for cost sharing games

R. Gopalakrishnan, Jason R. Marden, A. Wierman
{"title":"Characterizing distribution rules for cost sharing games","authors":"R. Gopalakrishnan, Jason R. Marden, A. Wierman","doi":"10.7907/AWE2-H976.","DOIUrl":null,"url":null,"abstract":"We consider the problem of designing the distribution rule used to share “welfare” (cost or revenue) among individually strategic agents. There are many distribution rules known to guarantee the existence of a (pure Nash) equilibrium in this setting, e.g., the Shapley value and its weighted variants; however a characterization of the space of distribution rules that yield the existence of a Nash equilibrium is unknown. Our work provides a step towards such a characterization. We prove that when the welfare function is strictly submodular, a budget-balanced distribution rule guarantees equilibrium existence for all games (i.e., all possible sets of resources, agent action sets, etc.) if and only if it is a weighted Shapley value.","PeriodicalId":112856,"journal":{"name":"International Conference on NETwork Games, Control and Optimization (NetGCooP 2011)","volume":"68 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on NETwork Games, Control and Optimization (NetGCooP 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7907/AWE2-H976.","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We consider the problem of designing the distribution rule used to share “welfare” (cost or revenue) among individually strategic agents. There are many distribution rules known to guarantee the existence of a (pure Nash) equilibrium in this setting, e.g., the Shapley value and its weighted variants; however a characterization of the space of distribution rules that yield the existence of a Nash equilibrium is unknown. Our work provides a step towards such a characterization. We prove that when the welfare function is strictly submodular, a budget-balanced distribution rule guarantees equilibrium existence for all games (i.e., all possible sets of resources, agent action sets, etc.) if and only if it is a weighted Shapley value.
成本分担博弈的分配规则特征
我们考虑设计分配规则的问题,用于在各个战略代理之间共享“福利”(成本或收入)。有许多已知的分布规则可以保证在这种情况下存在(纯纳什)均衡,例如,Shapley值及其加权变量;然而,产生纳什均衡存在的分布规则空间的表征是未知的。我们的工作向这样的描述迈出了一步。我们证明了当福利函数是严格的次模时,预算平衡分配规则保证所有博弈(即,所有可能的资源集,代理行动集等)的均衡存在,当且仅当它是加权Shapley值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信