Stochastic Matrix Factorization

C. Adams
{"title":"Stochastic Matrix Factorization","authors":"C. Adams","doi":"10.2139/ssrn.2840852","DOIUrl":null,"url":null,"abstract":"This paper considers a restriction to non-negative matrix factorization in which at least one matrix factor is stochastic. That is, the elements of the matrix factors are non-negative and the columns of one matrix factor sum to 1. This restriction includes topic models, a popular method for analyzing unstructured data. It also includes a method for storing and finding pictures. The paper presents necessary and sufficient conditions on the observed data such that the factorization is unique. In addition, the paper characterizes natural bounds on the parameters for any observed data and presents a consistent least squares estimator. The results are illustrated using a topic model analysis of PhD abstracts in economics and the problem of storing and retrieving a set of pictures of faces.","PeriodicalId":153695,"journal":{"name":"Cognition in Mathematics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognition in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2840852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper considers a restriction to non-negative matrix factorization in which at least one matrix factor is stochastic. That is, the elements of the matrix factors are non-negative and the columns of one matrix factor sum to 1. This restriction includes topic models, a popular method for analyzing unstructured data. It also includes a method for storing and finding pictures. The paper presents necessary and sufficient conditions on the observed data such that the factorization is unique. In addition, the paper characterizes natural bounds on the parameters for any observed data and presents a consistent least squares estimator. The results are illustrated using a topic model analysis of PhD abstracts in economics and the problem of storing and retrieving a set of pictures of faces.
随机矩阵分解
本文考虑了至少有一个矩阵因子是随机的非负矩阵分解的一个约束条件。也就是说,矩阵因子的元素是非负的,并且一个矩阵因子的列和为1。这种限制包括主题模型,这是一种分析非结构化数据的流行方法。它还包括存储和查找图片的方法。本文给出了观测数据分解是唯一的充分必要条件。此外,本文还刻画了任意观测数据参数的自然界,并给出了一致最小二乘估计。通过对经济学博士论文摘要的主题模型分析以及人脸图像的存储和检索问题来说明结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信