Teaching Students to Use the Gauss Method for Integer Matrices when Implemented on a Computer

T. Kosovskaya
{"title":"Teaching Students to Use the Gauss Method for Integer Matrices when Implemented on a Computer","authors":"T. Kosovskaya","doi":"10.32603/2071-2340-2019-3-90-95","DOIUrl":null,"url":null,"abstract":"The paper is written on the basis of a part of “Analysis of algorithms” course for students of the Computer science department of the Division of mathematics and mechanics of Saint Petersburg State University. The example of the computer implementation of the Gauss method illustrates the difference between the algebraic complexity (the number of arithmetic operations) of processing integers and the computational complexity which depends on the length of the input data. A formula which specifies the increase in the length of matrix coefficients, along with the implementation the Gauss method, is proved. The problems arising in the processing of large integers associated with “chopping” numbers are shown. To overcome the indicated problems, the possibility of using multi-valued integers is proposed. The upper bounds of the number of steps for processing the multivalued integers is shown to coincide with such bounds for a multi-tape Turing machine.","PeriodicalId":319537,"journal":{"name":"Computer Tools in Education","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Tools in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32603/2071-2340-2019-3-90-95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is written on the basis of a part of “Analysis of algorithms” course for students of the Computer science department of the Division of mathematics and mechanics of Saint Petersburg State University. The example of the computer implementation of the Gauss method illustrates the difference between the algebraic complexity (the number of arithmetic operations) of processing integers and the computational complexity which depends on the length of the input data. A formula which specifies the increase in the length of matrix coefficients, along with the implementation the Gauss method, is proved. The problems arising in the processing of large integers associated with “chopping” numbers are shown. To overcome the indicated problems, the possibility of using multi-valued integers is proposed. The upper bounds of the number of steps for processing the multivalued integers is shown to coincide with such bounds for a multi-tape Turing machine.
教学生在计算机上实现整数矩阵时使用高斯方法
本文是根据圣彼得堡国立大学数学与力学学部计算机科学系“算法分析”课程的一部分内容编写的。高斯方法的计算机实现示例说明了处理整数的代数复杂度(算术运算的次数)与依赖于输入数据长度的计算复杂度之间的区别。证明了矩阵系数长度随高斯方法的实现而增加的公式。在处理与“斩”数相关的大整数时出现的问题。为了克服上述问题,提出了使用多值整数的可能性。处理多值整数的步骤数的上界与多磁带图灵机的上界一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信