Search result diversification in Flickr

Sumit Negi, Abhimanyu Jaju, S. Chaudhury
{"title":"Search result diversification in Flickr","authors":"Sumit Negi, Abhimanyu Jaju, S. Chaudhury","doi":"10.1109/COMSNETS.2016.7439940","DOIUrl":null,"url":null,"abstract":"Promoting visual diversity in image search results has been of immense interest in the MIR (multimedia information retrieval) community. However, most of the work done in this space and the test collections used therein have ignored the use of social tags (user generated metadata) for image search result diversification on social multimedia platforms such as Flickr, Picasa etc. Unlike traditional multimedia content, content generated on such social media platforms are usually annotated with a rich set of explicit and implicit human generated metadata (referred here as social tags) such as keywords, textual description, category information, author's profile, user-to-user and user-to-content interaction etc which can be useful for the image search-result diversity task. In this paper we demonstrate how existing image search result diversification method can be extended to incorporate social tag information. Experiments on a real-world dataset shows that incorporating social tag features in some of the popular diversification algorithms results in improvement over baseline numbers.","PeriodicalId":185861,"journal":{"name":"2016 8th International Conference on Communication Systems and Networks (COMSNETS)","volume":"22 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Communication Systems and Networks (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS.2016.7439940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Promoting visual diversity in image search results has been of immense interest in the MIR (multimedia information retrieval) community. However, most of the work done in this space and the test collections used therein have ignored the use of social tags (user generated metadata) for image search result diversification on social multimedia platforms such as Flickr, Picasa etc. Unlike traditional multimedia content, content generated on such social media platforms are usually annotated with a rich set of explicit and implicit human generated metadata (referred here as social tags) such as keywords, textual description, category information, author's profile, user-to-user and user-to-content interaction etc which can be useful for the image search-result diversity task. In this paper we demonstrate how existing image search result diversification method can be extended to incorporate social tag information. Experiments on a real-world dataset shows that incorporating social tag features in some of the popular diversification algorithms results in improvement over baseline numbers.
Flickr的搜索结果多样化
促进图像搜索结果的视觉多样性已经引起了多媒体信息检索界的极大兴趣。然而,在这个领域所做的大部分工作和其中使用的测试集都忽略了在社交多媒体平台(如Flickr、Picasa等)上使用社交标签(用户生成的元数据)来实现图像搜索结果多样化。与传统的多媒体内容不同,此类社交媒体平台上生成的内容通常带有一组丰富的显式和隐式人工生成元数据(这里称为社交标签),如关键词、文本描述、类别信息、作者简介、用户与用户、用户与内容交互等,这些元数据可用于图像搜索结果多样性任务。在本文中,我们展示了如何扩展现有的图像搜索结果多样化方法以纳入社会标签信息。在真实数据集上的实验表明,在一些流行的多样化算法中加入社会标签特征可以改善基线数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信