F. Resta, M. Matteis, A. Pezzotta, S. D’Amico, A. Baschirotto
{"title":"A 30MHz 28dBm-IIP3 3.2mW fully-differential Sallen-Key 4th-order filter with out-of-band zeros cancellation","authors":"F. Resta, M. Matteis, A. Pezzotta, S. D’Amico, A. Baschirotto","doi":"10.1109/NEWCAS.2015.7182066","DOIUrl":null,"url":null,"abstract":"In this paper a 4th-order 30MHz Butterworth low-pass analog filter is presented, exploiting the Sallen-Key (SK) biquadratic cell circuit. The out-of-band zeros typically present in SK cells, are cancelled by using a low-power auxiliary path, resulting in a significant improvement of the stopband rejection, at the cost of a small power budget for the same auxiliary path biasing. An efficient unity gain buffer has been used, based on super-source-follower stage, providing very large in-band IIP3 over the entire filter bandwidth (21.5dBm for 25MHz&26MHz input tones), at 3.2mW power consumption from a single 1.8V supply voltage. The filter prototype has been designed in CMOS 0.18μm tech. The total area occupancy is 0.12mm2, the in-band integrated noise is 197μVRMS.","PeriodicalId":404655,"journal":{"name":"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2015.7182066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper a 4th-order 30MHz Butterworth low-pass analog filter is presented, exploiting the Sallen-Key (SK) biquadratic cell circuit. The out-of-band zeros typically present in SK cells, are cancelled by using a low-power auxiliary path, resulting in a significant improvement of the stopband rejection, at the cost of a small power budget for the same auxiliary path biasing. An efficient unity gain buffer has been used, based on super-source-follower stage, providing very large in-band IIP3 over the entire filter bandwidth (21.5dBm for 25MHz&26MHz input tones), at 3.2mW power consumption from a single 1.8V supply voltage. The filter prototype has been designed in CMOS 0.18μm tech. The total area occupancy is 0.12mm2, the in-band integrated noise is 197μVRMS.