Host intrusion detection for long stealthy system call sequences

Mohammed Taha Elgraini, N. Assem, T. Rachidi
{"title":"Host intrusion detection for long stealthy system call sequences","authors":"Mohammed Taha Elgraini, N. Assem, T. Rachidi","doi":"10.1109/CIST.2012.6388070","DOIUrl":null,"url":null,"abstract":"In this paper, we present SC2, an unsupervised learning classifier for detecting host intrusions from sequences of process system calls. SC2 is a naïve Bayes-like classifier based on Markov Model. We describe the classifier, and then provide experimental results on the University of New Mexico's four system call trace data sets, namely Synthetic Sendmail UNM, Synthetic Sendmail CERT, live lpr UNM and live lpr MIT. SC2 classification results are compared to leading machine learning techniques namely, Naive Bayes multinomial (NBm), C4.5 (decision tree), RIPPER (RP), support vector machine (SVM), and logistic regression (LR). Initial findings show that the accuracy of SC2 is comparable to those of leading classifiers, while SC2 has a better detection rate than some of these classifiers on some data sets. SC2 can classify efficiently very long stealthy sequences by using a backtrack, scale and re-multiply technique, together with estimation of standard IEEE 754-2008 relative error of floating-point arithmetic for an acceptable classification confidence.","PeriodicalId":120664,"journal":{"name":"2012 Colloquium in Information Science and Technology","volume":"3 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Colloquium in Information Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIST.2012.6388070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we present SC2, an unsupervised learning classifier for detecting host intrusions from sequences of process system calls. SC2 is a naïve Bayes-like classifier based on Markov Model. We describe the classifier, and then provide experimental results on the University of New Mexico's four system call trace data sets, namely Synthetic Sendmail UNM, Synthetic Sendmail CERT, live lpr UNM and live lpr MIT. SC2 classification results are compared to leading machine learning techniques namely, Naive Bayes multinomial (NBm), C4.5 (decision tree), RIPPER (RP), support vector machine (SVM), and logistic regression (LR). Initial findings show that the accuracy of SC2 is comparable to those of leading classifiers, while SC2 has a better detection rate than some of these classifiers on some data sets. SC2 can classify efficiently very long stealthy sequences by using a backtrack, scale and re-multiply technique, together with estimation of standard IEEE 754-2008 relative error of floating-point arithmetic for an acceptable classification confidence.
长隐身系统调用序列的主机入侵检测
在本文中,我们提出了SC2,一个用于从进程系统调用序列中检测主机入侵的无监督学习分类器。SC2是基于马尔可夫模型的naïve类贝叶斯分类器。我们描述了分类器,然后在新墨西哥大学的四个系统调用跟踪数据集上提供了实验结果,即Synthetic Sendmail UNM、Synthetic Sendmail CERT、live lpr UNM和live lpr MIT。将SC2分类结果与领先的机器学习技术进行比较,即朴素贝叶斯多项(NBm), C4.5(决策树),RIPPER (RP),支持向量机(SVM)和逻辑回归(LR)。初步研究结果表明,SC2的准确率与主要分类器相当,而在某些数据集上,SC2的检测率比其中一些分类器更好。SC2通过回溯、缩放和重乘技术,结合IEEE 754-2008标准的浮点算法相对误差估计,获得可接受的分类置信度,可以有效地对超长隐身序列进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信