Storyline-Centric Detection of Aphasia and Dysarthria in Stroke Patient Transcripts

Peiqi Sui, K. Wong, Xiaohui Yu, John Volpi, Stephen T. C. Wong
{"title":"Storyline-Centric Detection of Aphasia and Dysarthria in Stroke Patient Transcripts","authors":"Peiqi Sui, K. Wong, Xiaohui Yu, John Volpi, Stephen T. C. Wong","doi":"10.18653/v1/2023.clinicalnlp-1.45","DOIUrl":null,"url":null,"abstract":"Aphasia and dysarthria are both common symptoms of stroke, affecting around 30% and 50% of acute ischemic stroke patients. In this paper, we propose a storyline-centric approach to detect aphasia and dysarthria in acute stroke patients using transcribed picture descriptions alone. Our pipeline enriches the training set with healthy data to address the lack of acute stroke patient data and utilizes knowledge distillation to significantly improve upon a document classification baseline, achieving an AUC of 0.814 (aphasia) and 0.764 (dysarthria) on a patient-only validation set.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"62 43","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Natural Language Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.clinicalnlp-1.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aphasia and dysarthria are both common symptoms of stroke, affecting around 30% and 50% of acute ischemic stroke patients. In this paper, we propose a storyline-centric approach to detect aphasia and dysarthria in acute stroke patients using transcribed picture descriptions alone. Our pipeline enriches the training set with healthy data to address the lack of acute stroke patient data and utilizes knowledge distillation to significantly improve upon a document classification baseline, achieving an AUC of 0.814 (aphasia) and 0.764 (dysarthria) on a patient-only validation set.
以故事情节为中心的脑卒中患者记录中的失语和构音障碍检测
失语和构音障碍都是中风的常见症状,约占急性缺血性中风患者的30%和50%。在本文中,我们提出了一种以故事情节为中心的方法来检测急性中风患者的失语和构音障碍,仅使用转录的图片描述。我们的管道用健康数据丰富了训练集,以解决急性卒中患者数据的缺乏问题,并利用知识蒸馏显著提高了文档分类基线,在仅患者验证集上实现了0.814(失语)和0.764(构音障碍)的AUC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信