A Memristor-CMOS Braun Multiplier Array for Arithmetic Pipelining

Seungbum Baek, J. Eshraghian, Sang-Hyun Ahn, A. P. James, Kyoungrok Cho
{"title":"A Memristor-CMOS Braun Multiplier Array for Arithmetic Pipelining","authors":"Seungbum Baek, J. Eshraghian, Sang-Hyun Ahn, A. P. James, Kyoungrok Cho","doi":"10.1109/ICECS46596.2019.8964710","DOIUrl":null,"url":null,"abstract":"A multiplier is a core building block in most digital signal and image processing systems and increasingly so in neural processing units. The latter must parallelize very large scale multiply-and-accumulate operations in deep learning with reconfigurable weights to be multiplied with varying input. In light of this, we propose a memristor-CMOS hybrid multiplier which uses a Braun structure to enable segmentation of the multiplier array to process various multiplication operations simultaneously with reconfigurable bit-widths by varying a control signal, all on the same multiplier. This enables an increase in computational throughput. Memristors are used as basic logic elements and improve area utilization by fabricating them in the back end of the line before the pad level. The CMOS chip is fabricated in the SK Hynix 180-nm process with TiO2 memristors separately deposited on top. A performance evaluation is undertaken under a 4-point Fast Fourier Transform, demonstrating a decrease in area by 17% and power consumption by 35%-49% with a 100MHz system clock when compared to similarly behaving CMOS multipliers.","PeriodicalId":209054,"journal":{"name":"2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS)","volume":"265 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS46596.2019.8964710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A multiplier is a core building block in most digital signal and image processing systems and increasingly so in neural processing units. The latter must parallelize very large scale multiply-and-accumulate operations in deep learning with reconfigurable weights to be multiplied with varying input. In light of this, we propose a memristor-CMOS hybrid multiplier which uses a Braun structure to enable segmentation of the multiplier array to process various multiplication operations simultaneously with reconfigurable bit-widths by varying a control signal, all on the same multiplier. This enables an increase in computational throughput. Memristors are used as basic logic elements and improve area utilization by fabricating them in the back end of the line before the pad level. The CMOS chip is fabricated in the SK Hynix 180-nm process with TiO2 memristors separately deposited on top. A performance evaluation is undertaken under a 4-point Fast Fourier Transform, demonstrating a decrease in area by 17% and power consumption by 35%-49% with a 100MHz system clock when compared to similarly behaving CMOS multipliers.
用于算术流水线的忆阻器- cmos布朗乘法器阵列
乘法器是大多数数字信号和图像处理系统的核心组成部分,在神经处理单元中也越来越重要。后者必须在深度学习中并行化非常大规模的乘法和累积操作,并具有可重构的权重,以便与不同的输入相乘。鉴于此,我们提出了一种忆阻器- cmos混合乘法器,该乘法器使用布朗结构,通过改变控制信号,使乘法器阵列的分割能够同时处理各种相乘操作,并具有可重构的位宽,所有这些操作都在同一乘法器上。这可以提高计算吞吐量。忆阻器被用作基本的逻辑元件,并通过在线的后端在焊盘级之前制造它们来提高面积利用率。该CMOS芯片采用SK海力士180纳米工艺制作,顶部单独沉积TiO2忆阻器。在4点快速傅立叶变换下进行了性能评估,与性能相似的CMOS乘法器相比,在100MHz系统时钟下,面积减少了17%,功耗减少了35%-49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信