Ahmad Zubair, J. Niroula, N. Chowdhury, Yuhao Zhang, J. Lemettinen, T. Palacios
{"title":"Materials and Technology Issues for the Next Generation of Power Electronic Devices","authors":"Ahmad Zubair, J. Niroula, N. Chowdhury, Yuhao Zhang, J. Lemettinen, T. Palacios","doi":"10.1109/DRC50226.2020.9135183","DOIUrl":null,"url":null,"abstract":"By 2030, about 80% of all US electricity is expected to flow through power electronics. This will require power electronic devices and circuits with much higher efficiency and smaller form-factor than today’s silicon-based systems. III-Nitride semiconductors and other ultra-wide bandgap materials are ideal platforms for the new generation of power electronics thanks to the combination of excellent transport properties and the high critical electric field enabled by their wide bandgap [1] . This talk will discuss recent progress in our group in developing high voltage power transistors and diodes based on wide bandgap materials.","PeriodicalId":397182,"journal":{"name":"2020 Device Research Conference (DRC)","volume":"515 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC50226.2020.9135183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
By 2030, about 80% of all US electricity is expected to flow through power electronics. This will require power electronic devices and circuits with much higher efficiency and smaller form-factor than today’s silicon-based systems. III-Nitride semiconductors and other ultra-wide bandgap materials are ideal platforms for the new generation of power electronics thanks to the combination of excellent transport properties and the high critical electric field enabled by their wide bandgap [1] . This talk will discuss recent progress in our group in developing high voltage power transistors and diodes based on wide bandgap materials.