Multilinear analysis for discrete and periodic pseudo-differential operators inLp-spaces

Duv'an Cardona, Vishvesh Kumar
{"title":"Multilinear analysis for discrete and periodic pseudo-differential operators inLp-spaces","authors":"Duv'an Cardona, Vishvesh Kumar","doi":"10.18273/REVINT.V36N2-2018006","DOIUrl":null,"url":null,"abstract":"In this note we announce our investigation on the L properties for periodic and discrete multilinear pseudo-differential operators. First, we review the periodic analysis of multilinear pseudo-differential operators by showing classical multilinear Fourier multipliers theorems (proved by Coifman and Meyer, Tomita, Miyachi, Fujita, Grafakos, Tao, etc.) in the context of periodic and discrete multilinear pseudo-differential operators. For this, we use the periodic analysis of pseudo-differential operators developed by Ruzhansky and Turunen. The s-nuclearity, 0 < s ≤ 1, for the discrete and periodic multilinear pseudo-differential operators will be investigated. To do so, we classify those s-nuclear, 0 < s ≤ 1, multilinear integral operators on arbitrary Lebesgue spaces defined on σ-finite measures spaces. Finally, we present some applications of our analysis to deduce the periodic Kato-Ponce inequality and to examine the s-nuclearity of multilinear Bessel potentials as well as the s-nuclearity of periodic Fourier integral operators admitting suitable types of singularities.","PeriodicalId":402331,"journal":{"name":"Revista Integración","volume":"47 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Integración","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/REVINT.V36N2-2018006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this note we announce our investigation on the L properties for periodic and discrete multilinear pseudo-differential operators. First, we review the periodic analysis of multilinear pseudo-differential operators by showing classical multilinear Fourier multipliers theorems (proved by Coifman and Meyer, Tomita, Miyachi, Fujita, Grafakos, Tao, etc.) in the context of periodic and discrete multilinear pseudo-differential operators. For this, we use the periodic analysis of pseudo-differential operators developed by Ruzhansky and Turunen. The s-nuclearity, 0 < s ≤ 1, for the discrete and periodic multilinear pseudo-differential operators will be investigated. To do so, we classify those s-nuclear, 0 < s ≤ 1, multilinear integral operators on arbitrary Lebesgue spaces defined on σ-finite measures spaces. Finally, we present some applications of our analysis to deduce the periodic Kato-Ponce inequality and to examine the s-nuclearity of multilinear Bessel potentials as well as the s-nuclearity of periodic Fourier integral operators admitting suitable types of singularities.
线性空间中离散和周期伪微分算子的多线性分析
在这篇笔记中,我们宣布我们对周期和离散多线性伪微分算子的L性质的研究。首先,我们通过展示经典的多线性傅立叶乘子定理(由Coifman和Meyer, Tomita, Miyachi, Fujita, Grafakos, Tao等人证明)在周期和离散多线性伪微分算子的背景下回顾了多线性伪微分算子的周期分析。为此,我们使用Ruzhansky和Turunen提出的伪微分算子的周期分析。研究离散和周期多线性伪微分算子的s核性,即0 < s≤1。为此,我们对定义在σ-有限测度空间上的任意Lebesgue空间上的s核、0 < s≤1的多线性积分算子进行了分类。最后,我们给出了我们的分析在推导周期Kato-Ponce不等式和检验多线性贝塞尔势的s核性以及允许适当奇点类型的周期傅立叶积分算子的s核性方面的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信