Successive Interference Cancellation using LSTM in MIMO

Raushan Kumar, Dr. Nikhil Ranjan
{"title":"Successive Interference Cancellation using LSTM in MIMO","authors":"Raushan Kumar, Dr. Nikhil Ranjan","doi":"10.24113/ijoscience.v7i12.450","DOIUrl":null,"url":null,"abstract":"OFDM (orthogonal frequency division multiplexing) is a wireless network methodology that sends multiple data streams across a particular channel while effectiently handling inter-symbol interference and enhancing frequency band available. And since the antenna is sending signals, evaluating the noise in a noisy channel is essential. This research aims into compressed sensing (CS) as a way to improve throughput and BER performance by transmitting additional data bits within every subcarrier frame whilst still limiting detector unpredictability. The Neuro-LS methodology is used in this study to generate a soft trellis decoding algorithm through channel estimation. Trellis decoding performs better BER, and DNN relying channel estimation outperforms BER, according to the findings.","PeriodicalId":429424,"journal":{"name":"SMART MOVES JOURNAL IJOSCIENCE","volume":"119 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMART MOVES JOURNAL IJOSCIENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24113/ijoscience.v7i12.450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

OFDM (orthogonal frequency division multiplexing) is a wireless network methodology that sends multiple data streams across a particular channel while effectiently handling inter-symbol interference and enhancing frequency band available. And since the antenna is sending signals, evaluating the noise in a noisy channel is essential. This research aims into compressed sensing (CS) as a way to improve throughput and BER performance by transmitting additional data bits within every subcarrier frame whilst still limiting detector unpredictability. The Neuro-LS methodology is used in this study to generate a soft trellis decoding algorithm through channel estimation. Trellis decoding performs better BER, and DNN relying channel estimation outperforms BER, according to the findings.
MIMO中LSTM的逐次干扰消除
OFDM(正交频分复用)是一种通过特定信道发送多个数据流的无线网络方法,同时有效地处理码间干扰并增强可用频带。由于天线正在发送信号,因此评估噪声信道中的噪声是必不可少的。本研究旨在压缩感知(CS)作为一种提高吞吐量和误码率性能的方法,通过在每个子载波帧内传输额外的数据位,同时仍然限制检测器的不可预测性。本研究采用神经- ls方法,通过信道估计生成一种软栅格解码算法。根据研究结果,网格解码具有更好的误码率,而依赖DNN的信道估计优于误码率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信