Accuracy of Statistical Classification Strategies in Remote Sensing Imagery

A. Frery, S. Ferrero, O. Bustos
{"title":"Accuracy of Statistical Classification Strategies in Remote Sensing Imagery","authors":"A. Frery, S. Ferrero, O. Bustos","doi":"10.1109/SIBGRAPI.2006.4","DOIUrl":null,"url":null,"abstract":"We present the assessment of two classification procedures using a Monte Carlo experience and Landsat data. Classification performance is hard to assess with generality due to the huge number of variables involved. In this case, we consider the problem of classifying multispectral optical imagery with pointwise Gaussian maximum likelihood and contextual ICM (iterated conditional modes), with and without errors in the training stage. Using simulation the ground truth is known and, therefore, precise comparisons are possible. The contextual approach proved being superior than the pointwise one, at the expense of requiring more computational resources, with both real and simulated data. Quantitative and qualitative results are discussed","PeriodicalId":253871,"journal":{"name":"2006 19th Brazilian Symposium on Computer Graphics and Image Processing","volume":"106 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 19th Brazilian Symposium on Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2006.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present the assessment of two classification procedures using a Monte Carlo experience and Landsat data. Classification performance is hard to assess with generality due to the huge number of variables involved. In this case, we consider the problem of classifying multispectral optical imagery with pointwise Gaussian maximum likelihood and contextual ICM (iterated conditional modes), with and without errors in the training stage. Using simulation the ground truth is known and, therefore, precise comparisons are possible. The contextual approach proved being superior than the pointwise one, at the expense of requiring more computational resources, with both real and simulated data. Quantitative and qualitative results are discussed
遥感影像统计分类策略的准确性
我们使用蒙特卡罗经验和陆地卫星数据对两种分类程序进行评估。由于涉及的变量数量巨大,分类性能难以进行一般性评估。在这种情况下,我们考虑使用点向高斯最大似然和上下文ICM(迭代条件模式)对多光谱光学图像进行分类的问题,在训练阶段有或没有错误。通过模拟,可以知道实际情况,因此可以进行精确的比较。事实证明,上下文方法比点式方法更优越,但代价是需要更多的计算资源,无论是真实数据还是模拟数据。讨论了定量和定性结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信