M. Turnquist, E. Laulainen, Jani Mäkipää, L. Koskinen
{"title":"Measurement of a system-adaptive error-detection sequential circuit with subthreshold SCL","authors":"M. Turnquist, E. Laulainen, Jani Mäkipää, L. Koskinen","doi":"10.1109/NORCHP.2011.6126746","DOIUrl":null,"url":null,"abstract":"Timing error detection (TED) microprocessors are able to eliminate large timing margins by operating up to a voltage-frequency point in which intermittent errors occur. The detection of these errors requires an error-detection sequential (EDS) circuit. This paper presents the measurements of an EDS circuit called TEDsc. Using subthreshold source-coupled logic, TEDsc is able to dynamically adapt to system-level requirements. Measurements of TEDsc are presented in terms of a new system-level TED definition. TEDsc is implemented in 65 nm CMOS, has an area of 97.5 µm2, and consumes 79 pW (Vdd=250 mV). TEDsc operates at a clock period (TCLK) of 150 F04 at Vdd=400 mV with a sufficiently large detection window. By decreasing the size of the detection window, TEDsc can operate to at least TCLK=50 F04.","PeriodicalId":108291,"journal":{"name":"2011 NORCHIP","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 NORCHIP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NORCHP.2011.6126746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Timing error detection (TED) microprocessors are able to eliminate large timing margins by operating up to a voltage-frequency point in which intermittent errors occur. The detection of these errors requires an error-detection sequential (EDS) circuit. This paper presents the measurements of an EDS circuit called TEDsc. Using subthreshold source-coupled logic, TEDsc is able to dynamically adapt to system-level requirements. Measurements of TEDsc are presented in terms of a new system-level TED definition. TEDsc is implemented in 65 nm CMOS, has an area of 97.5 µm2, and consumes 79 pW (Vdd=250 mV). TEDsc operates at a clock period (TCLK) of 150 F04 at Vdd=400 mV with a sufficiently large detection window. By decreasing the size of the detection window, TEDsc can operate to at least TCLK=50 F04.