Link Completion using Prediction by Partial Matching

P. Chaiwanarom, C. Lursinsap
{"title":"Link Completion using Prediction by Partial Matching","authors":"P. Chaiwanarom, C. Lursinsap","doi":"10.1109/ISCIT.2008.4700278","DOIUrl":null,"url":null,"abstract":"Prediction by partial matching (PPM) is typically used as a powerful method for data compression. Recently, PPM was applied to solve link prediction problem, e. g., predictive prefetching on the Web. Link completion is a link analysis problem and is almost identical to link prediction but harder and more general. This research applies PPM to impute the missing links in single (directed) graph-structured data model with node and link labels. The experiments use the co-authorship dataset for case-study. Our proposed algorithm not only uses original PPM forward method but also PPM backward and hybrid methods. The algorithm can predict any missing position at any position of a given query link. The experimental results show the prediction accuracy in several dimensions depending on the testing data.","PeriodicalId":215340,"journal":{"name":"2008 International Symposium on Communications and Information Technologies","volume":"79 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Communications and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2008.4700278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Prediction by partial matching (PPM) is typically used as a powerful method for data compression. Recently, PPM was applied to solve link prediction problem, e. g., predictive prefetching on the Web. Link completion is a link analysis problem and is almost identical to link prediction but harder and more general. This research applies PPM to impute the missing links in single (directed) graph-structured data model with node and link labels. The experiments use the co-authorship dataset for case-study. Our proposed algorithm not only uses original PPM forward method but also PPM backward and hybrid methods. The algorithm can predict any missing position at any position of a given query link. The experimental results show the prediction accuracy in several dimensions depending on the testing data.
使用部分匹配预测的链路完成
部分匹配预测(PPM)通常被用作数据压缩的一种强大方法。最近,PPM被用于解决链接预测问题,如Web上的预测预取。链接补全是一个链接分析问题,与链接预测几乎相同,但难度更大,也更通用。本研究将PPM应用于具有节点和链路标签的单(有向)图结构数据模型中缺失链路的估算。实验使用合作作者数据集进行案例研究。该算法不仅采用了原始的PPM前向方法,而且采用了PPM后向方法和混合方法。该算法可以预测给定查询链接中任意位置的缺失位置。实验结果表明,该方法在多个维度上的预测精度取决于测试数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信