Applying Chimera Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey

J. Annis, Yong Zhao, Jens-S. Vöckler, M. Wilde, S. Kent, Ian T Foster
{"title":"Applying Chimera Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey","authors":"J. Annis, Yong Zhao, Jens-S. Vöckler, M. Wilde, S. Kent, Ian T Foster","doi":"10.1109/SC.2002.10021","DOIUrl":null,"url":null,"abstract":"In many scientific disciplines — especially long running, data- intensive collaborations — it is important to track all aspects of data capture, production, transformation, and analysis. In principle, one can then audit, validate, reproduce, and/or re-run with corrections various data transformations. We have recently proposed and prototyped the Chimera virtual data system, a new database-driven approach to this problem. We present here a major application study in which we apply Chimera to a challenging data analysis problem: the identification of galaxy clusters within the Sloan Digital Sky Survey. We describe the problem, its computational procedures, and the use of Chimera to plan and orchestrate the workflow of thousands of tasks on a data grid comprising hundreds of computers. This experience suggests that a general set of tools can indeed enhance the accuracy and productivity of scientific data reduction and that further development and application of this paradigm will offer great value.","PeriodicalId":302800,"journal":{"name":"ACM/IEEE SC 2002 Conference (SC'02)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2002 Conference (SC'02)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2002.10021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

Abstract

In many scientific disciplines — especially long running, data- intensive collaborations — it is important to track all aspects of data capture, production, transformation, and analysis. In principle, one can then audit, validate, reproduce, and/or re-run with corrections various data transformations. We have recently proposed and prototyped the Chimera virtual data system, a new database-driven approach to this problem. We present here a major application study in which we apply Chimera to a challenging data analysis problem: the identification of galaxy clusters within the Sloan Digital Sky Survey. We describe the problem, its computational procedures, and the use of Chimera to plan and orchestrate the workflow of thousands of tasks on a data grid comprising hundreds of computers. This experience suggests that a general set of tools can indeed enhance the accuracy and productivity of scientific data reduction and that further development and application of this paradigm will offer great value.
奇美拉虚拟数据概念在斯隆巡天星团查找中的应用
在许多科学学科中——特别是长期运行的、数据密集型的协作——跟踪数据捕获、生产、转换和分析的所有方面是很重要的。原则上,可以对各种数据转换进行审计、验证、复制和/或重新运行。我们最近提出并原型化了Chimera虚拟数据系统,这是一种新的数据库驱动方法来解决这个问题。我们在这里提出了一个主要的应用研究,我们将Chimera应用于一个具有挑战性的数据分析问题:在斯隆数字巡天中识别星系团。我们描述了这个问题,它的计算过程,以及使用Chimera在由数百台计算机组成的数据网格上计划和协调数千个任务的工作流程。这一经验表明,一套通用工具确实可以提高科学数据精简的准确性和生产力,进一步发展和应用这一范式将带来巨大价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信