Order Graphs and Cross-Layer Parametric Significance-Driven Modelling

A. Rafiev, Fei Xia, A. Iliasov, Rem Gensh, Ali Aalsaud, A. Romanovsky, A. Yakovlev
{"title":"Order Graphs and Cross-Layer Parametric Significance-Driven Modelling","authors":"A. Rafiev, Fei Xia, A. Iliasov, Rem Gensh, Ali Aalsaud, A. Romanovsky, A. Yakovlev","doi":"10.1109/ACSD.2015.16","DOIUrl":null,"url":null,"abstract":"Traditional hierarchical modelling methods tend to have layers of abstraction corresponding to naturally existing layers of concern in multi-level systems. Although logically and functionally intuitive, this is not always optimal for analysis and design. For instance, parts of a system in the same logical layer may not contribute to the same degree on some metric, e.g. system power consumption. When focusing on a specific parameter or set of parameters, to moderate the analysis, design and runtime effort, less significant parts of the system should be modelled at higher levels of abstraction and more significant ones with more detail. This parametric significance-driven modelling approach focuses more on optimal parametric fidelity than on logical intuition. Using system power consumption as an example parameter, this paper presents Order Graphs (OGs), which have a clear hierarchical structure, and provide straightforward vertical zooming across multiple layers (orders) of model abstraction, resulting in the discovery of power-proportional cuts that run through different orders to be analysed together in a flat manner. Stochastic Activity Networks (SANs), a good flat modelling method, is suggested as an example of studying techniques for cuts discovered with OGs. A series of experiments on an Odroid development system consisting of an ARM big.LITTLE multi-core structure provides initial validation for the approach.","PeriodicalId":162527,"journal":{"name":"2015 15th International Conference on Application of Concurrency to System Design","volume":"19 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Application of Concurrency to System Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSD.2015.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Traditional hierarchical modelling methods tend to have layers of abstraction corresponding to naturally existing layers of concern in multi-level systems. Although logically and functionally intuitive, this is not always optimal for analysis and design. For instance, parts of a system in the same logical layer may not contribute to the same degree on some metric, e.g. system power consumption. When focusing on a specific parameter or set of parameters, to moderate the analysis, design and runtime effort, less significant parts of the system should be modelled at higher levels of abstraction and more significant ones with more detail. This parametric significance-driven modelling approach focuses more on optimal parametric fidelity than on logical intuition. Using system power consumption as an example parameter, this paper presents Order Graphs (OGs), which have a clear hierarchical structure, and provide straightforward vertical zooming across multiple layers (orders) of model abstraction, resulting in the discovery of power-proportional cuts that run through different orders to be analysed together in a flat manner. Stochastic Activity Networks (SANs), a good flat modelling method, is suggested as an example of studying techniques for cuts discovered with OGs. A series of experiments on an Odroid development system consisting of an ARM big.LITTLE multi-core structure provides initial validation for the approach.
序图和跨层参数意义驱动建模
传统的分层建模方法往往具有与多层次系统中自然存在的关注层相对应的抽象层。尽管在逻辑和功能上都是直观的,但这并不总是分析和设计的最佳选择。例如,同一逻辑层中的系统部分可能在某些度量上的贡献程度不同,例如系统功耗。当关注特定的参数或参数集时,为了缓和分析、设计和运行时的工作量,系统中不太重要的部分应该在更高的抽象层次上建模,而更重要的部分应该有更多的细节。这种参数意义驱动的建模方法更侧重于最优参数保真度,而不是逻辑直觉。使用系统功耗作为示例参数,本文提出了顺序图(OGs),它具有清晰的层次结构,并提供跨模型抽象的多层(顺序)的直接垂直缩放,从而发现通过不同顺序运行的功率比例切割,以平面方式一起分析。随机活动网络(SANs)是一种很好的平面建模方法,被建议作为研究用OGs发现的切口技术的例子。在一个由ARM处理器组成的android开发系统上进行了一系列的实验。LITTLE多核结构为该方法提供了初步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信