K. Toh, C. Chuang, T. Chen, J. Warnock, G. Li, K. Chin, T. Ning
{"title":"A 23 ps/2.1 mW ECL gate","authors":"K. Toh, C. Chuang, T. Chen, J. Warnock, G. Li, K. Chin, T. Ning","doi":"10.1109/ISSCC.1989.48265","DOIUrl":null,"url":null,"abstract":"Simulated output waveforms at 0.1, 0.3 and, 0.6-pF loading of a design optimized for a 0.3-pF nominal load are shown. An AC-coupled APD ECL (active-pull-down emitter-coupled-logic) gate with significantly improved gate delay in the low-power (1-2 mW) regime is described. Unloaded gate delays of 23 and 35 ps at 2.1 and 1.1-mW/gate power, respectively, were demonstrated in a bipolar technology using a double-poly, self-aligned process with emitter width of 0.8 mu m (mask). The device cross-section is presented along with an SEM (scanning electron microscopy) micrograph of the basic gate used in the ring oscillator.<<ETX>>","PeriodicalId":385838,"journal":{"name":"IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers","volume":"695 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.1989.48265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Simulated output waveforms at 0.1, 0.3 and, 0.6-pF loading of a design optimized for a 0.3-pF nominal load are shown. An AC-coupled APD ECL (active-pull-down emitter-coupled-logic) gate with significantly improved gate delay in the low-power (1-2 mW) regime is described. Unloaded gate delays of 23 and 35 ps at 2.1 and 1.1-mW/gate power, respectively, were demonstrated in a bipolar technology using a double-poly, self-aligned process with emitter width of 0.8 mu m (mask). The device cross-section is presented along with an SEM (scanning electron microscopy) micrograph of the basic gate used in the ring oscillator.<>