Model-based imitation learning by probabilistic trajectory matching

Péter Englert, A. Paraschos, Jan Peters, M. Deisenroth
{"title":"Model-based imitation learning by probabilistic trajectory matching","authors":"Péter Englert, A. Paraschos, Jan Peters, M. Deisenroth","doi":"10.1109/ICRA.2013.6630832","DOIUrl":null,"url":null,"abstract":"One of the most elegant ways of teaching new skills to robots is to provide demonstrations of a task and let the robot imitate this behavior. Such imitation learning is a non-trivial task: Different anatomies of robot and teacher, and reduced robustness towards changes in the control task are two major difficulties in imitation learning. We present an imitation-learning approach to efficiently learn a task from expert demonstrations. Instead of finding policies indirectly, either via state-action mappings (behavioral cloning), or cost function learning (inverse reinforcement learning), our goal is to find policies directly such that predicted trajectories match observed ones. To achieve this aim, we model the trajectory of the teacher and the predicted robot trajectory by means of probability distributions. We match these distributions by minimizing their Kullback-Leibler divergence. In this paper, we propose to learn probabilistic forward models to compute a probability distribution over trajectories. We compare our approach to model-based reinforcement learning methods with hand-crafted cost functions. Finally, we evaluate our method with experiments on a real compliant robot.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"26 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6630832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

One of the most elegant ways of teaching new skills to robots is to provide demonstrations of a task and let the robot imitate this behavior. Such imitation learning is a non-trivial task: Different anatomies of robot and teacher, and reduced robustness towards changes in the control task are two major difficulties in imitation learning. We present an imitation-learning approach to efficiently learn a task from expert demonstrations. Instead of finding policies indirectly, either via state-action mappings (behavioral cloning), or cost function learning (inverse reinforcement learning), our goal is to find policies directly such that predicted trajectories match observed ones. To achieve this aim, we model the trajectory of the teacher and the predicted robot trajectory by means of probability distributions. We match these distributions by minimizing their Kullback-Leibler divergence. In this paper, we propose to learn probabilistic forward models to compute a probability distribution over trajectories. We compare our approach to model-based reinforcement learning methods with hand-crafted cost functions. Finally, we evaluate our method with experiments on a real compliant robot.
基于模型的概率轨迹匹配模仿学习
教授机器人新技能的最优雅的方法之一是提供任务的演示,并让机器人模仿这种行为。这种模仿学习是一项不平凡的任务:机器人和教师的不同解剖结构,以及对控制任务变化的鲁棒性降低是模仿学习的两个主要困难。我们提出了一种模仿学习方法来有效地从专家演示中学习任务。我们的目标不是通过状态-动作映射(行为克隆)或成本函数学习(逆强化学习)间接地找到策略,而是直接找到策略,使预测的轨迹与观察到的轨迹相匹配。为了实现这一目标,我们通过概率分布对教师的轨迹和预测的机器人轨迹进行建模。我们通过最小化它们的Kullback-Leibler散度来匹配这些分布。在本文中,我们提出学习概率前向模型来计算轨迹上的概率分布。我们将我们的方法与手工制作成本函数的基于模型的强化学习方法进行了比较。最后,在一个真实的柔性机器人上进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信