{"title":"Noise attenuation motivated controller design. Part II: Position control","authors":"M. Huba, P. Bisták, I. Bélai","doi":"10.1109/SPEEDAM.2014.6871950","DOIUrl":null,"url":null,"abstract":"This paper treats a noise attenuation motivated position controller design outlined in [1]. This modular approach to a filtered PD and a disturbance observer based filtered PID (FPD and DO-FPID) control design, including an experimental evaluation of an optimal filter degree choice, is extended to a constrained control grounded in the invariant set approach [2]-[4]. Loop performance is evaluated by recently introduced measures for deviations from monotonic and two-pulse shapes of transients typical for control of plants with dominant 2nd order dynamics. The analysis shows that a simplified disturbance observer (DO) based constrained filtered PID controller (DO-CFPID) derived for a double integrator plant model gives an interesting performance also for constrained integral systems with a stable mode. It remains simple and it offers an excellent performance also from the point of view of the noise attenuation versus speed of transients.","PeriodicalId":344918,"journal":{"name":"2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion","volume":"65 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEEDAM.2014.6871950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
This paper treats a noise attenuation motivated position controller design outlined in [1]. This modular approach to a filtered PD and a disturbance observer based filtered PID (FPD and DO-FPID) control design, including an experimental evaluation of an optimal filter degree choice, is extended to a constrained control grounded in the invariant set approach [2]-[4]. Loop performance is evaluated by recently introduced measures for deviations from monotonic and two-pulse shapes of transients typical for control of plants with dominant 2nd order dynamics. The analysis shows that a simplified disturbance observer (DO) based constrained filtered PID controller (DO-CFPID) derived for a double integrator plant model gives an interesting performance also for constrained integral systems with a stable mode. It remains simple and it offers an excellent performance also from the point of view of the noise attenuation versus speed of transients.