T. Masuda, N. Shiramizu, Takahiro Nakamura, K. Washio
{"title":"SiGe HBT amplifiers with high image rejection for quasi-millimeter-wave frequency range","authors":"T. Masuda, N. Shiramizu, Takahiro Nakamura, K. Washio","doi":"10.1109/SMIC.2010.5422962","DOIUrl":null,"url":null,"abstract":"24-GHz band amplifiers with a high image-rejection function have been designed and characterized using a 0.18-µm SiGe BiCMOS technology. To achieve a higher image-rejection ratio (IRR) in the quasi-millimeter-wave frequency region, an amplifier configuration with a notch-filter type feedback circuit has been proposed. A low noise amplifier (LNA) and a driver amplifier (DA) were developed to eliminate the image-frequency signal for super-heterodyne transceivers. The LNA obtained a 16.5-dB gain, 5.9-dB NF at 24 GHz and a more than 40-dB IRR at a frequency of 18.5 GHz. The power consumption was 8.4 mW with a 1.4-V power supply. The DA also achieved a 6.5-dB gain at 24 GHz and a 40-dB IRR at 16 GHz. Moreover, large-signal characteristics such as an OP1dB of +1.4 dBm and an OIP3 of +15 dBm were obtained for a power consumption of 15 mW with a 1.5-V power supply. The large-signal capability of the IRR was also experimentally confirmed.","PeriodicalId":404957,"journal":{"name":"2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)","volume":" 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMIC.2010.5422962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
24-GHz band amplifiers with a high image-rejection function have been designed and characterized using a 0.18-µm SiGe BiCMOS technology. To achieve a higher image-rejection ratio (IRR) in the quasi-millimeter-wave frequency region, an amplifier configuration with a notch-filter type feedback circuit has been proposed. A low noise amplifier (LNA) and a driver amplifier (DA) were developed to eliminate the image-frequency signal for super-heterodyne transceivers. The LNA obtained a 16.5-dB gain, 5.9-dB NF at 24 GHz and a more than 40-dB IRR at a frequency of 18.5 GHz. The power consumption was 8.4 mW with a 1.4-V power supply. The DA also achieved a 6.5-dB gain at 24 GHz and a 40-dB IRR at 16 GHz. Moreover, large-signal characteristics such as an OP1dB of +1.4 dBm and an OIP3 of +15 dBm were obtained for a power consumption of 15 mW with a 1.5-V power supply. The large-signal capability of the IRR was also experimentally confirmed.