On a generalization of the robin problem for the Laplace equation in the circle

M. Baltabaeva, B. Turmetov
{"title":"On a generalization of the robin problem for the Laplace equation in the circle","authors":"M. Baltabaeva, B. Turmetov","doi":"10.47526/2022-3/2524-0080.03","DOIUrl":null,"url":null,"abstract":"In this paper, we study the solvability of the fractional analogue of the Robin problem for the Laplace equation. A modified fractional differentiation operator in the sense of Hadamard is considered as a boundary operator. Boundary conditions are given in the form of a connection between different values of the unknown function in a circle. The problem is solved using the Fourier expansion method. For various values of the parameters of the boundary operators involved, theorems on the existence and uniqueness of a solution to the problem under study are proved.","PeriodicalId":171505,"journal":{"name":"Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy)","volume":"37 26","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47526/2022-3/2524-0080.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the solvability of the fractional analogue of the Robin problem for the Laplace equation. A modified fractional differentiation operator in the sense of Hadamard is considered as a boundary operator. Boundary conditions are given in the form of a connection between different values of the unknown function in a circle. The problem is solved using the Fourier expansion method. For various values of the parameters of the boundary operators involved, theorems on the existence and uniqueness of a solution to the problem under study are proved.
圆上拉普拉斯方程的罗宾问题的推广
本文研究了拉普拉斯方程的Robin问题的分数阶模拟的可解性。考虑了Hadamard意义上的改进分数阶微分算子作为边界算子。边界条件以圆内未知函数的不同值之间的连接形式给出。用傅里叶展开法解决了这个问题。对于所涉及的边界算子参数的不同取值,证明了所研究问题解的存在唯一性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信