Temporal Characteristics of the Flow of Acoustic Emission Signals in the Development of Cracks in Glass under Shock Loading

S. Bekher, A. Popkov
{"title":"Temporal Characteristics of the Flow of Acoustic Emission Signals in the Development of Cracks in Glass under Shock Loading","authors":"S. Bekher, A. Popkov","doi":"10.22213/2413-1172-2019-1-62-71","DOIUrl":null,"url":null,"abstract":"В настоящее время отсутствуют технические решения для реализации АЭ-контроля объектов, находящихся под действием динамических нагрузок. Расширение области применения метода, например, для мониторинга объектов в процессе ударного нагружения требует фундаментальных исследований закономерностей акустической эмиссии (АЭ) при динамических воздействиях. Целью работы является определение временных параметров АЭ, возникающей в объекте в результате ударного нагружения, для обнаружения развивающихся трещин и разрушений хрупкого типа. В экспериментах плоские образцы из силикатного стекла нагружались ударами стальными бойками, свободно падающими с высоты 500 мм. Развитие трещины контролировалось с использованием быстродействующей тензометрической системы, АЭ-аппаратуры и видеокамеры. Ударное воздействие возбуждало в объекте упругие затухающие колебания, которые фиксировались и акустико-эмиссионной, и тензометрической системами. Характерная частота сигнала тензосистемы составляла 1,6 кГц, АЭ-системы - 110 кГц. Продолжительность времени затухания колебаний в сигнале тензосистемы не превышала 4 мс, непрерывный сигнал в АЭ-системе снижался ниже порогового уровня (5 мкВ) за время 30 мс. При нагружении образцов с трещиной наблюдалось смещение кромок по типу продольного сдвига на 0,1 мм с характерным временем перехода в первоначальное состояние 0,4 с. Тензодатчики, установленные перпендикулярно направлению развития трещины, регистрировали процесс релаксации деформаций трещины в течение 400 с. Зависимость количества зарегистрированных сигналов от времени удовлетворительно описывалась логарифмическим законом. После затухания непрерывных АЭ-сигналов, вызванных ударом, наблюдались два потока дискретных сигналов АЭ. Сигналы первого потока, связанные со смещением кромок трещины, регистрировались в интервале 0,03…0,35 с. Распределение временных интервалов между сигналами первого потока описывается экспоненциальной функцией. Сигналы второго потока регистрировались в интервале 0,35…400 с только при увеличении длины трещины. Временные интервалы между сигналами второго потока распределены по логарифмическому закону, что соответствует временной зависимости деформаций. Потоки сигналов являются нестационарными и связаны с разрушением кромок трещины после перераспределения напряжений, вызванных увеличением ее длины. Зарегистрированные сигналы АЭ могут быть использованы для обнаружения развивающихся трещины при ударном нагружении. Оптимальным способом их идентификации являются методы временной селекции в диапазоне 0,03…0,35 с для обнаружения развитой трещины и 0,35…400 с для обнаружения процессов роста трещины.","PeriodicalId":443403,"journal":{"name":"Bulletin of Kalashnikov ISTU","volume":"44 21","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Kalashnikov ISTU","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22213/2413-1172-2019-1-62-71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

В настоящее время отсутствуют технические решения для реализации АЭ-контроля объектов, находящихся под действием динамических нагрузок. Расширение области применения метода, например, для мониторинга объектов в процессе ударного нагружения требует фундаментальных исследований закономерностей акустической эмиссии (АЭ) при динамических воздействиях. Целью работы является определение временных параметров АЭ, возникающей в объекте в результате ударного нагружения, для обнаружения развивающихся трещин и разрушений хрупкого типа. В экспериментах плоские образцы из силикатного стекла нагружались ударами стальными бойками, свободно падающими с высоты 500 мм. Развитие трещины контролировалось с использованием быстродействующей тензометрической системы, АЭ-аппаратуры и видеокамеры. Ударное воздействие возбуждало в объекте упругие затухающие колебания, которые фиксировались и акустико-эмиссионной, и тензометрической системами. Характерная частота сигнала тензосистемы составляла 1,6 кГц, АЭ-системы - 110 кГц. Продолжительность времени затухания колебаний в сигнале тензосистемы не превышала 4 мс, непрерывный сигнал в АЭ-системе снижался ниже порогового уровня (5 мкВ) за время 30 мс. При нагружении образцов с трещиной наблюдалось смещение кромок по типу продольного сдвига на 0,1 мм с характерным временем перехода в первоначальное состояние 0,4 с. Тензодатчики, установленные перпендикулярно направлению развития трещины, регистрировали процесс релаксации деформаций трещины в течение 400 с. Зависимость количества зарегистрированных сигналов от времени удовлетворительно описывалась логарифмическим законом. После затухания непрерывных АЭ-сигналов, вызванных ударом, наблюдались два потока дискретных сигналов АЭ. Сигналы первого потока, связанные со смещением кромок трещины, регистрировались в интервале 0,03…0,35 с. Распределение временных интервалов между сигналами первого потока описывается экспоненциальной функцией. Сигналы второго потока регистрировались в интервале 0,35…400 с только при увеличении длины трещины. Временные интервалы между сигналами второго потока распределены по логарифмическому закону, что соответствует временной зависимости деформаций. Потоки сигналов являются нестационарными и связаны с разрушением кромок трещины после перераспределения напряжений, вызванных увеличением ее длины. Зарегистрированные сигналы АЭ могут быть использованы для обнаружения развивающихся трещины при ударном нагружении. Оптимальным способом их идентификации являются методы временной селекции в диапазоне 0,03…0,35 с для обнаружения развитой трещины и 0,35…400 с для обнаружения процессов роста трещины.
冲击载荷作用下玻璃裂纹发展过程中声发射信号流动的时间特征
目前还没有执行动态压力下物体的ae控制的技术解决方案。例如,在冲击加载过程中监测物体的扩展需要对动态影响下的声学排放模式进行基本研究。这项工作的目的是确定因冲击压力而产生的物体的时间参数,以检测易碎类型的裂缝和破坏。在实验中,硅酸盐玻璃的扁平样品中含有从500毫米高空自由下落的钢针。裂缝的发展是由快速应变系统、ae设备和摄像机控制的。冲击刺激了物体的弹性衰减振荡,这些振荡被声学发射和应变系统捕获。应变系统信号的频率为1.6 khz, ae系统为110 khz。应变信号衰减时间不超过4毫秒,ae系统的连续信号在30毫秒内下降到阈值以下(5毫秒)。在收集裂纹样品时,观察到纵向移动0.1毫米的锯齿状位移,特征时间位移为0.4 c。安装垂直于裂纹方向的应变传感器记录了400秒内裂纹应变的放松过程。记录到的信号数量与时间的关系符合对数定律。在连续的ae信号衰减之后,受到冲击的信号有两波离散信号。与裂谷位移有关的第一个通量信号被记录在0.03…0.35 c之间。第一个通量信号之间的时间间隔分布被描述为指数函数。第二次通量信号在0.35…400秒内被记录下来,只有当裂缝长增加时。第二个气流信号之间的时间间隔是根据对数定律分配的,这与时间扭曲的关系是一致的。信号流是不稳定的,与压力增加后应力重新分配后断裂的边缘有关。注册的ae信号可以用来检测冲击负荷下的发展裂缝。识别它们的最佳方法是在0.03 . 0.35 . c范围内进行时间选择,以检测裂纹,0.35 . 400。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信