Machine learning-based approaches to analyse and improve the diagnosis of endothelial dysfunction

Chiara Calamanti, M. Paolanti, L. Romeo, Michele Bernardini, E. Frontoni
{"title":"Machine learning-based approaches to analyse and improve the diagnosis of endothelial dysfunction","authors":"Chiara Calamanti, M. Paolanti, L. Romeo, Michele Bernardini, E. Frontoni","doi":"10.1109/MESA.2018.8449152","DOIUrl":null,"url":null,"abstract":"Endothelial Dysfunction is achieving increasing importance, because it is strictly related to cardiovascular risks and it provides important prognostic data in addition to the classical ones. This paper introduces a machine learning approach for predicting Endothelial Dysfunction. The approach was applied and tested on a newly collected dataset, “Endothelial Dysfunction Dataset (EDD)” and several machine learning algorithms are compared. This method comprises features related to the anthropometric or pathological characteristics of the analysed subjects. The experiments yield high accuracy, demonstrating the effectiveness and suitability of the proposed approach.","PeriodicalId":138936,"journal":{"name":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"52 17","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA.2018.8449152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Endothelial Dysfunction is achieving increasing importance, because it is strictly related to cardiovascular risks and it provides important prognostic data in addition to the classical ones. This paper introduces a machine learning approach for predicting Endothelial Dysfunction. The approach was applied and tested on a newly collected dataset, “Endothelial Dysfunction Dataset (EDD)” and several machine learning algorithms are compared. This method comprises features related to the anthropometric or pathological characteristics of the analysed subjects. The experiments yield high accuracy, demonstrating the effectiveness and suitability of the proposed approach.
基于机器学习的方法分析和改进内皮功能障碍的诊断
内皮功能障碍正变得越来越重要,因为它与心血管风险密切相关,并且除了经典的预后数据外,它还提供了重要的预后数据。本文介绍了一种预测内皮功能障碍的机器学习方法。该方法在新收集的数据集“内皮功能障碍数据集(EDD)”上进行了应用和测试,并对几种机器学习算法进行了比较。该方法包括与被分析对象的人体测量学或病理学特征相关的特征。实验结果表明,该方法具有较高的精度,证明了该方法的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信