Engineering MOF surface defects in mixed matrix membranes: An effective strategy to enhance MOF/polymer adhesion and control interfacial gas transport

IF 4.9 Q1 ENGINEERING, CHEMICAL
Dong Fan , Aydin Ozcan , Osama Shekhah , Rocio Semino , Mohamed Eddaoudi , Guillaume Maurin
{"title":"Engineering MOF surface defects in mixed matrix membranes: An effective strategy to enhance MOF/polymer adhesion and control interfacial gas transport","authors":"Dong Fan ,&nbsp;Aydin Ozcan ,&nbsp;Osama Shekhah ,&nbsp;Rocio Semino ,&nbsp;Mohamed Eddaoudi ,&nbsp;Guillaume Maurin","doi":"10.1016/j.memlet.2022.100029","DOIUrl":null,"url":null,"abstract":"<div><p>MOF/polymer adhesion in Mixed Matrix Membranes (MMMs) has been mainly enhanced so far via MOF and/or polymer functionalization to strengthen the interactions between the two components. This strategy, albeit effective, is generally accompanied by a drop in the permeability and/or selectivity performance of the MMMs. In this contribution, engineering structure defects at the MOF surfaces is proposed as an effective route to create pockets that immobilize part of the polymer chain, which is of crucial importance both to avoid plasticization issues and to enhance the MOF/polymer affinity while overcoming the adhesion/performance trade-off in MMMs. This engineered interfacial interlocking structure also serves as a bridge to accelerate the gas transport from the polymeric region towards the MOF pore entrance. This concept is showcased with a model MMM made of the prototypical UiO-66 MOF and the glassy Polymer of Intrinsic Microporosity-1 (PIM-1) and tested using CO<sub>2</sub>, CH<sub>4</sub> and, N<sub>2</sub> as guest species. Our computational findings reveal that a defective UiO-66 MOF surface improves the MOF/PIM-1 adhesion and contributes to accelerate the interfacial gas transport of the slender molecules CO<sub>2</sub> and N<sub>2</sub> and in a lesser extent of the spherical molecule CH<sub>4</sub>. This translates into a selective enhancement of the CO<sub>2</sub> transport once combined with CH<sub>4</sub> which paves the ways toward promising perspective for pre-combustion CO<sub>2</sub> capture.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421222000162/pdfft?md5=07a60cbf077957e3a2943c497944bd5d&pid=1-s2.0-S2772421222000162-main.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421222000162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 5

Abstract

MOF/polymer adhesion in Mixed Matrix Membranes (MMMs) has been mainly enhanced so far via MOF and/or polymer functionalization to strengthen the interactions between the two components. This strategy, albeit effective, is generally accompanied by a drop in the permeability and/or selectivity performance of the MMMs. In this contribution, engineering structure defects at the MOF surfaces is proposed as an effective route to create pockets that immobilize part of the polymer chain, which is of crucial importance both to avoid plasticization issues and to enhance the MOF/polymer affinity while overcoming the adhesion/performance trade-off in MMMs. This engineered interfacial interlocking structure also serves as a bridge to accelerate the gas transport from the polymeric region towards the MOF pore entrance. This concept is showcased with a model MMM made of the prototypical UiO-66 MOF and the glassy Polymer of Intrinsic Microporosity-1 (PIM-1) and tested using CO2, CH4 and, N2 as guest species. Our computational findings reveal that a defective UiO-66 MOF surface improves the MOF/PIM-1 adhesion and contributes to accelerate the interfacial gas transport of the slender molecules CO2 and N2 and in a lesser extent of the spherical molecule CH4. This translates into a selective enhancement of the CO2 transport once combined with CH4 which paves the ways toward promising perspective for pre-combustion CO2 capture.

混合基质膜中工程化MOF表面缺陷:增强MOF/聚合物粘附和控制界面气体输运的有效策略
迄今为止,MOF/聚合物在混合基质膜(MMMs)中的粘附性主要通过MOF和/或聚合物功能化来增强两组分之间的相互作用。这种策略虽然有效,但通常伴随着MMMs的渗透率和/或选择性性能的下降。在这篇文章中,MOF表面的工程结构缺陷被认为是一种有效的途径,可以产生固定聚合物链部分的口袋,这对于避免塑化问题和增强MOF/聚合物亲和性至关重要,同时克服mmmm中的粘附性/性能折衷。这种设计的界面联锁结构还可以作为加速气体从聚合物区域向MOF孔入口输送的桥梁。这一概念通过一个由UiO-66 MOF原型和具有固有微孔率-1 (PIM-1)的玻璃状聚合物制成的MMM模型进行了展示,并以CO2、CH4和N2作为客源物质进行了测试。我们的计算结果表明,缺陷的UiO-66 MOF表面改善了MOF/PIM-1的粘附,并有助于加速细长分子CO2和N2的界面气体传输,以及较小程度的球形分子CH4。这意味着一旦与CH4结合,二氧化碳运输的选择性增强,这为燃烧前二氧化碳捕获的前景铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信