Heterostructured Bi2S3/MoS2 Nanoarrays for Efficient Electrocatalytic Nitrate Reduction to Ammonia Under Ambient Conditions

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xuejing Liu, Xiaolong Xu, Faying Li, Jingyi Xu, Hongmin Ma, Xu Sun, Dan Wu, Changwen Zhang, Xiang Ren* and Qin Wei*, 
{"title":"Heterostructured Bi2S3/MoS2 Nanoarrays for Efficient Electrocatalytic Nitrate Reduction to Ammonia Under Ambient Conditions","authors":"Xuejing Liu,&nbsp;Xiaolong Xu,&nbsp;Faying Li,&nbsp;Jingyi Xu,&nbsp;Hongmin Ma,&nbsp;Xu Sun,&nbsp;Dan Wu,&nbsp;Changwen Zhang,&nbsp;Xiang Ren* and Qin Wei*,&nbsp;","doi":"10.1021/acsami.2c10323","DOIUrl":null,"url":null,"abstract":"<p >Developing efficient electrocatalysts to realize the nitrate reduction reaction (eNO<sub>3</sub><sup>–</sup>RR) for ammonia synthesis as an alternative to the traditional Haber–Bosch production process is of great significance. Herein, the heterostructured Bi<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanoarrays were successfully synthesized by Bi<sub>2</sub>S<sub>3</sub> nanowires anchored on MoS<sub>2</sub> nanosheets. Owing to the interfacial coupling effect, both particular surface area and exposure active sites increase. Density functional theory further uncovered that the excellent activity originates from charge transfer of the interface and a low potential barrier of 0.58 eV for hydrogenation of *NO to *NOH on Bi<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub>. Compared with pure Bi<sub>2</sub>S<sub>3</sub> and MoS<sub>2</sub> catalysts, the heterostructured Bi<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanoarrays exhibit a superior NH<sub>3</sub> yield of 15.04 × 10<sup>–2</sup> mmol·h<sup>–1</sup>·cm<sup>–2</sup> and a Faraday efficiency of 88.4% at ?0.8 V versus the reversible hydrogen electrode. This work provides a new avenue to explore advanced electrocatalysts, which is expected to shorten the distance from the practical application of the eNO<sub>3</sub><sup>–</sup>RR technology.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.2c10323","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

Abstract

Developing efficient electrocatalysts to realize the nitrate reduction reaction (eNO3RR) for ammonia synthesis as an alternative to the traditional Haber–Bosch production process is of great significance. Herein, the heterostructured Bi2S3/MoS2 nanoarrays were successfully synthesized by Bi2S3 nanowires anchored on MoS2 nanosheets. Owing to the interfacial coupling effect, both particular surface area and exposure active sites increase. Density functional theory further uncovered that the excellent activity originates from charge transfer of the interface and a low potential barrier of 0.58 eV for hydrogenation of *NO to *NOH on Bi2S3/MoS2. Compared with pure Bi2S3 and MoS2 catalysts, the heterostructured Bi2S3/MoS2 nanoarrays exhibit a superior NH3 yield of 15.04 × 10–2 mmol·h–1·cm–2 and a Faraday efficiency of 88.4% at ?0.8 V versus the reversible hydrogen electrode. This work provides a new avenue to explore advanced electrocatalysts, which is expected to shorten the distance from the practical application of the eNO3RR technology.

Abstract Image

异质结构Bi2S3/MoS2纳米阵列在环境条件下高效电催化硝酸还原为氨
开发高效电催化剂以实现硝酸还原反应(eNO3-RR)合成氨,替代传统的Haber-Bosch生产工艺具有重要意义。本文将Bi2S3纳米线固定在MoS2纳米片上,成功地合成了异质结构Bi2S3/MoS2纳米阵列。由于界面耦合效应,比表面积和暴露活性位点均增加。密度泛函理论进一步揭示了Bi2S3/MoS2的良好活性源于界面电荷转移和低势垒0.58 eV的*NO加氢到*NOH。与纯Bi2S3和MoS2催化剂相比,异质结构Bi2S3/MoS2纳米阵列在- 0.8 V下的NH3产率为15.04 × 10-2 mmol·h-1·cm-2,法拉第效率为88.4%。这项工作为探索先进的电催化剂提供了新的途径,有望缩短eNO3-RR技术实际应用的距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信