Low-power and high-speed 13T SRAM cell using FinFETs

S. Saxena, R. Mehra
{"title":"Low-power and high-speed 13T SRAM cell using FinFETs","authors":"S. Saxena, R. Mehra","doi":"10.1049/iet-cds.2016.0287","DOIUrl":null,"url":null,"abstract":"Fin field-effect transistors (FinFETs) are replacing the traditional planar metal-oxide-semiconductor FETs (MOSFETs) because of superior capability in controlling short channel effects, leakage current, propagation delay, and power dissipation. Planar MOSFETs face the problem of process variability but the FinFETs mitigate the device-performance variability due to number of dopant ions. This work includes the design of static-random access memory (SRAM) cell using FinFETs. The performance analysis of the ST11T, proposed ST13T SRAM cell, and with power gating sleep transistors is given in this study using the Cadence Virtuoso Tool (V.6.1). Owing to its improved gate controllability and scalability, the FinFET transistor structure is better than the conventional planar complementary MOS technology. The proposed design aims at the power reduction and speed improvement for the SRAM cell. From the result it is clear that optimised proposed FinFET-based ST13T SRAM cell is 92% more power efficient with the use of power gating technique, i.e. sleep transistors approach and having 12.84% less delay due to the use of transmission gates in the access path.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds.2016.0287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Fin field-effect transistors (FinFETs) are replacing the traditional planar metal-oxide-semiconductor FETs (MOSFETs) because of superior capability in controlling short channel effects, leakage current, propagation delay, and power dissipation. Planar MOSFETs face the problem of process variability but the FinFETs mitigate the device-performance variability due to number of dopant ions. This work includes the design of static-random access memory (SRAM) cell using FinFETs. The performance analysis of the ST11T, proposed ST13T SRAM cell, and with power gating sleep transistors is given in this study using the Cadence Virtuoso Tool (V.6.1). Owing to its improved gate controllability and scalability, the FinFET transistor structure is better than the conventional planar complementary MOS technology. The proposed design aims at the power reduction and speed improvement for the SRAM cell. From the result it is clear that optimised proposed FinFET-based ST13T SRAM cell is 92% more power efficient with the use of power gating technique, i.e. sleep transistors approach and having 12.84% less delay due to the use of transmission gates in the access path.
使用finfet的低功耗和高速13T SRAM单元
翅片场效应晶体管(finfet)由于在控制短通道效应、漏电流、传播延迟和功耗方面具有优越的性能,正在取代传统的平面金属氧化物半导体场效应晶体管(mosfet)。平面mosfet面临工艺可变性的问题,而finfet缓解了由于掺杂离子数量导致的器件性能可变性。这项工作包括使用finfet设计静态随机存取存储器(SRAM)单元。本研究使用Cadence Virtuoso工具(V.6.1)对ST11T、ST13T SRAM单元以及功率门控睡眠晶体管进行了性能分析。由于其栅极可控性和可扩展性的提高,FinFET晶体管结构优于传统的平面互补MOS技术。提出的设计旨在降低SRAM单元的功耗和提高速度。从结果可以清楚地看出,使用功率门控技术(即睡眠晶体管方法),优化的基于finfet的ST13T SRAM单元的功率效率提高了92%,并且由于在访问路径中使用传输门而减少了12.84%的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信