Geostatistical-inspired fast layout optimisation of a nano-CMOS thermal sensor

Oghenekarho Okobiah, S. Mohanty, E. Kougianos
{"title":"Geostatistical-inspired fast layout optimisation of a nano-CMOS thermal sensor","authors":"Oghenekarho Okobiah, S. Mohanty, E. Kougianos","doi":"10.1049/iet-cds.2012.0358","DOIUrl":null,"url":null,"abstract":"Continuous and aggressive scaling of semiconductor technology has led to persistent and dominant nanoscale effects on analogue/mixed-signal (AMS) circuits. Design space exploration and optimisation costs using conventional techniques have increased to infeasible levels. Hence, growing research for alternative design and metamodelling techniques with a much reduced design space exploration and optimisation cost and high level of accuracy, continues to be very active. This study presents a geostatistical inspired metamodelling and optimisation technique for fast and accurate design optimisation of nano-complementary metal oxide semiconductor (CMOS) circuits. The design methodology proposed integrates a simple Kriging technique with efficient and accurate prediction characteristics as the metamodel generation technique. A gravitational search algorithm (GSA) is applied on the generated metamodel (substituted for the circuit netlist) to solve the design optimisation problem. The proposed methodology is applicable to AMS circuits and systems. Its effectiveness is illustrated with the optimisation of a 45 nm CMOS thermal sensor. With six design parameters, the design optimisation time for the thermal sensor is decreased by 90% and produces an improvement of 36.8% in power consumption. To the best of the authors' knowledge this is the first work to use GSA for analogue design optimisation.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds.2012.0358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Continuous and aggressive scaling of semiconductor technology has led to persistent and dominant nanoscale effects on analogue/mixed-signal (AMS) circuits. Design space exploration and optimisation costs using conventional techniques have increased to infeasible levels. Hence, growing research for alternative design and metamodelling techniques with a much reduced design space exploration and optimisation cost and high level of accuracy, continues to be very active. This study presents a geostatistical inspired metamodelling and optimisation technique for fast and accurate design optimisation of nano-complementary metal oxide semiconductor (CMOS) circuits. The design methodology proposed integrates a simple Kriging technique with efficient and accurate prediction characteristics as the metamodel generation technique. A gravitational search algorithm (GSA) is applied on the generated metamodel (substituted for the circuit netlist) to solve the design optimisation problem. The proposed methodology is applicable to AMS circuits and systems. Its effectiveness is illustrated with the optimisation of a 45 nm CMOS thermal sensor. With six design parameters, the design optimisation time for the thermal sensor is decreased by 90% and produces an improvement of 36.8% in power consumption. To the best of the authors' knowledge this is the first work to use GSA for analogue design optimisation.
基于地质统计学的纳米cmos热传感器快速布局优化
半导体技术的持续和积极的缩放导致了模拟/混合信号(AMS)电路中持续和主导的纳米级效应。使用传统技术的设计空间探索和优化成本已经增加到不可行的水平。因此,不断增长的替代设计和元建模技术的研究,大大减少了设计空间探索和优化成本,并具有高水平的准确性,继续非常活跃。本研究提出了一种地统计学启发的元建模和优化技术,用于快速准确地优化纳米互补金属氧化物半导体(CMOS)电路的设计。所提出的设计方法将简单的克里格技术与高效准确的预测特性相结合,作为元模型生成技术。将引力搜索算法(GSA)应用于生成的元模型(代替电路网络表)来解决设计优化问题。所提出的方法适用于AMS电路和系统。通过对45纳米CMOS热传感器的优化,说明了该方法的有效性。通过六个设计参数,热传感器的设计优化时间缩短了90%,功耗提高了36.8%。据作者所知,这是第一个使用GSA进行模拟设计优化的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信