Linear Decompositions for Multi-Valued Input Classification Functions

Tsutomu Sasao, J. T. Butler
{"title":"Linear Decompositions for Multi-Valued Input Classification Functions","authors":"Tsutomu Sasao, J. T. Butler","doi":"10.1109/ISMVL51352.2021.00013","DOIUrl":null,"url":null,"abstract":"In a multi-valued input classification function, each input combination represents properties of an object, while the output represents the class of the object. Each variable may have different radix. In most cases, the functions are partially defined. To represent multi-valued variables, both one-hot and minimum-length encoding are considered. Experimental results using University of California Irvine (UCI) benchmark functions show that the one-hot approach results in fewer variables than the minimum-length approach with linear decompositions.","PeriodicalId":129346,"journal":{"name":"2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL)","volume":"48 29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL51352.2021.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a multi-valued input classification function, each input combination represents properties of an object, while the output represents the class of the object. Each variable may have different radix. In most cases, the functions are partially defined. To represent multi-valued variables, both one-hot and minimum-length encoding are considered. Experimental results using University of California Irvine (UCI) benchmark functions show that the one-hot approach results in fewer variables than the minimum-length approach with linear decompositions.
多值输入分类函数的线性分解
在多值输入分类函数中,每个输入组合表示对象的属性,而输出表示对象的类。每个变量可以有不同的基数。在大多数情况下,函数是部分定义的。为了表示多值变量,考虑了单热编码和最小长度编码。使用加州大学欧文分校(UCI)基准函数的实验结果表明,单热方法比线性分解的最小长度方法产生的变量更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信