The predictability of cross-sectional returns in high frequency

Y. Wang
{"title":"The predictability of cross-sectional returns in high frequency","authors":"Y. Wang","doi":"10.12660/rbfin.v20n1.2022.84399","DOIUrl":null,"url":null,"abstract":"\nStock return forecast is of great importance to trading, hedging, and portfolio management. In this article, we apply LASSO and random forest to make rolling one-minute-ahead return forecasts of Dow Jones stocks, using the cross-section of lagged returns of S&P 500 components as candidate predictors. Although the number of candidate variables is large, the negative out-of-sample R2 suggests that the predictions from LASSO and random forest give larger mean-squared error than the historical average. So, there is no evidence of predictability in the cross-sectional returns of large stocks in high frequency. The predictability presented by Chinco et al. (2019) might be due to the interaction between large and small stocks.\n","PeriodicalId":152637,"journal":{"name":"Brazilian Review of Finance","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Review of Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12660/rbfin.v20n1.2022.84399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stock return forecast is of great importance to trading, hedging, and portfolio management. In this article, we apply LASSO and random forest to make rolling one-minute-ahead return forecasts of Dow Jones stocks, using the cross-section of lagged returns of S&P 500 components as candidate predictors. Although the number of candidate variables is large, the negative out-of-sample R2 suggests that the predictions from LASSO and random forest give larger mean-squared error than the historical average. So, there is no evidence of predictability in the cross-sectional returns of large stocks in high frequency. The predictability presented by Chinco et al. (2019) might be due to the interaction between large and small stocks.
高频横截面收益的可预测性
股票收益预测对股票交易、对冲和投资组合管理具有重要意义。在本文中,我们使用LASSO和随机森林对道琼斯股票进行滚动提前一分钟的收益预测,使用标准普尔500指数成分股滞后收益的横截面作为候选预测因子。虽然候选变量的数量很大,但负的样本外R2表明,LASSO和随机森林的预测给出的均方误差大于历史平均值。因此,在高频情况下,大型股票的横截面收益不存在可预测性。Chinco et al.(2019)提出的可预测性可能是由于大小种群之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信