Scalable Distributed Meta-Data Management in Parallel NFS

R. Arumugam, Wujuan Lin, S. Yi
{"title":"Scalable Distributed Meta-Data Management in Parallel NFS","authors":"R. Arumugam, Wujuan Lin, S. Yi","doi":"10.1109/IIAI-AAI.2016.91","DOIUrl":null,"url":null,"abstract":"High performance computing (HPC) applications demand high I/O throughput from file systems to match their fast processing requirements. These HPC applications create large amounts of file meta-data that can overwhelm current single meta-data server file systems leading to performance bottlenecks. We address this problem with a multiple meta-data server (M-MDS) design using standard parallel NFS (pNFS). We utilize NFS directory referrals mechanism with hashing to efficiently distribute meta-data across a cluster of metadata servers. We show through a large scale setup in Amazon EC2 that our pNFS M-MDS can scale almost linearly and outperform Lustre CMD (Clustered Metadata) by up to 3 times in some of the file system meta-data operation benchmarks.","PeriodicalId":272739,"journal":{"name":"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2016.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

High performance computing (HPC) applications demand high I/O throughput from file systems to match their fast processing requirements. These HPC applications create large amounts of file meta-data that can overwhelm current single meta-data server file systems leading to performance bottlenecks. We address this problem with a multiple meta-data server (M-MDS) design using standard parallel NFS (pNFS). We utilize NFS directory referrals mechanism with hashing to efficiently distribute meta-data across a cluster of metadata servers. We show through a large scale setup in Amazon EC2 that our pNFS M-MDS can scale almost linearly and outperform Lustre CMD (Clustered Metadata) by up to 3 times in some of the file system meta-data operation benchmarks.
并行NFS中的可扩展分布式元数据管理
高性能计算(HPC)应用程序要求文件系统具有较高的I/O吞吐量,以满足其快速处理需求。这些HPC应用程序创建了大量的文件元数据,这些元数据可能会压倒当前的单个元数据服务器文件系统,从而导致性能瓶颈。我们通过使用标准并行NFS (pNFS)的多元数据服务器(M-MDS)设计来解决这个问题。我们利用NFS目录引用机制和散列来高效地跨元数据服务器集群分发元数据。通过在Amazon EC2中的大规模设置,我们的pNFS M-MDS几乎可以线性扩展,并且在一些文件系统元数据操作基准测试中,性能比Lustre CMD(集群元数据)高出3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信