Logic expressions of monotonic multiple-valued functions

K. Nakashima, Y. Nakamura, N. Takagi
{"title":"Logic expressions of monotonic multiple-valued functions","authors":"K. Nakashima, Y. Nakamura, N. Takagi","doi":"10.1109/ISMVL.1996.508370","DOIUrl":null,"url":null,"abstract":"This paper presents some fundamental properties of multiple-valued logic functions monotonic with respect to a partial-ordering relation which is introduced in the set of truth values and does not necessarily have the greatest or least element. Two kinds of necessary and sufficient conditions for monotonic p-valued functions are given with the proofs. Their logic formulas using unary operators defined in the partial-ordering relation and a simplification method for those logic formulas are also given. These results include our former results for p-valued functions monotonic with respect to the ambiguity relation which is a partial-ordering relation with the greatest element.","PeriodicalId":403347,"journal":{"name":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1996.508370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents some fundamental properties of multiple-valued logic functions monotonic with respect to a partial-ordering relation which is introduced in the set of truth values and does not necessarily have the greatest or least element. Two kinds of necessary and sufficient conditions for monotonic p-valued functions are given with the proofs. Their logic formulas using unary operators defined in the partial-ordering relation and a simplification method for those logic formulas are also given. These results include our former results for p-valued functions monotonic with respect to the ambiguity relation which is a partial-ordering relation with the greatest element.
单调多值函数的逻辑表达式
本文给出了多值逻辑函数在真值集合中不存在最大或最小元素的偏序关系下单调的几个基本性质。给出了单调p值函数的两类充要条件,并给出了证明。给出了它们用偏序关系中定义的一元算子的逻辑公式,并给出了这些逻辑公式的简化方法。这些结果包括我们以前关于p值函数单调的关于模糊关系的结果,模糊关系是与最大元素的偏序关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信